• Chinese Physics B
  • Vol. 29, Issue 10, (2020)
Aiping Fang1,2,†, Shanshan Liang1, Yongdong Li3, Hongguang Wang3,4, and Yue Wang3,4
Author Affiliations
  • 1School of Physics, Xi’an Jiaotong University, Xi’an 70049, China
  • 2State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi’an 71004, China
  • 3Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 4Xian Moduo Technology Co., Ltd, Xi’an 71009, China
  • show less
    DOI: 10.1088/1674-1056/abaed6 Cite this Article
    Aiping Fang, Shanshan Liang, Yongdong Li, Hongguang Wang, Yue Wang. Modes decomposition in particle-in-cell software CEMPIC[J]. Chinese Physics B, 2020, 29(10): Copy Citation Text show less

    Abstract

    The numerical method of modes analysis and decomposition of the output signal in 3D electromagnetic particle-in-cell simulation is presented. By the method, multiple modes can be resolved at one time using a set of diagnostic data, the amplitudes and the phases of the specified modes can all be given separately. Based on the method, the output signals of one X-band tri-bend mode converter used for one high power microwave device, with ionization process in the device due to the strong normal electric field, are analyzed and decomposed.
    ei=Li\boldsymbolE(\boldsymbolr,t)d\boldsymboll,bi=Si\boldsymbolB(\boldsymbolr,t)d\boldsymbols,(1)

    View in Article

    hi=Li\boldsymbolH(\boldsymbolr,t)d\boldsymboll,di=Si\boldsymbolD(\boldsymbolr,t)d\boldsymbols,(2)

    View in Article

    \boldsymbole=(e1e2eieN)T,\boldsymbolh=(h1h2hihN)T,(3)

    View in Article

    \boldsymbold=(d1d2didN)T,\boldsymbolb=(b1b2bibN)T,(4)

    View in Article

    \boldsymbold=\boldsymbolMε\boldsymbole,\boldsymbolb=\boldsymbolMμ\boldsymbolh,(5)

    View in Article

    \boldsymbolMμ1\boldsymbolC\boldsymbole=ddt\boldsymbolh,(6)

    View in Article

    \boldsymbolMε1\boldsymbolC\boldsymbolh=ddt\boldsymbole,(7)

    View in Article

    \boldsymbolMε1\boldsymbolC\boldsymbolMμ1\boldsymbolC\boldsymbole=d2dt2\boldsymbole,(8)

    View in Article

    \boldsymbolMμ1\boldsymbolC\boldsymbolMε1\boldsymbolC\boldsymbolh=d2dt2\boldsymbolh.(9)

    View in Article

    \boldsymbolA\boldsymbole=ω2\boldsymbole,(10)

    View in Article

    \boldsymbolA\boldsymbolh=ω2\boldsymbolh,(11)

    View in Article

    \boldsymbolei\boldsymbolej={0,ij,1,i=j,(12)

    View in Article

    \boldsymbolhi\boldsymbolhj={0,ij,1,i=j.(13)

    View in Article

    \boldsymbolQ=j\boldsymbolqj,(14)

    View in Article

    \boldsymbolqj=cos(kjzωt+ϕj+)\boldsymbolAj++cos(kjzωt+ϕj)\boldsymbolAj,(15)

    View in Article

    qj1=cos(kjz1ωt1+ϕj+)Aj++cos(kjz1ωt1+ϕj)Aj,(16)

    View in Article

    qj2=cos(kjz2ωt2+ϕj+)Aj++cos(kjz2ωt2+ϕj)Aj,(17)

    View in Article

    qj3=cos(kjz3ωt3+ϕj+)Aj++cos(kjz3ωt3+ϕj)Aj,(18)

    View in Article

    qj4=cos(kjz4ωt4+ϕj+)Aj++cos(kjz4ωt4+ϕj)Aj.(19)

    View in Article

    z2=z1+142πk,(20)

    View in Article

    z3=z1,(21)

    View in Article

    z4=z1142πk,(22)

    View in Article

    t2=t1,(23)

    View in Article

    t3=t4=t11t2πω,(24)

    View in Article

    qj1=cos(ψj+)Aj++cos(ψj)Aj,(25)

    View in Article

    qj2=cos(ψj++ϕj0)Aj++cos(ψj+ϕj0)Aj,(26)

    View in Article

    qj3=sin(ψj+)Aj++sin(ψj)Aj,(27)

    View in Article

    qj4=sin(ψj+ϕj0)Aj++sin(ψjϕj0)Aj.(28)

    View in Article

    Aj+=(qj1cosϕj0qj2qj3sinϕj0)2+(qj3cosϕj0+qj4+qj1sinϕj0)22sinϕj0,(29)

    View in Article

    Aj=(qj1cosϕj0qj2+qj3sinϕj0)2+(qj3cosϕj0+qj4qj1sinϕj0)22sinϕj0.(30)

    View in Article

    Aiping Fang, Shanshan Liang, Yongdong Li, Hongguang Wang, Yue Wang. Modes decomposition in particle-in-cell software CEMPIC[J]. Chinese Physics B, 2020, 29(10):
    Download Citation