[1] Wang Q, Gao C Q. Research progress on eye-safe all-solid-state single-frequency lasers[J]. Chinese Journal of Lasers, 48, 0501004(2021).
[2] Liu Z J, Wang H Y, Xu X J. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 48, 0401001(2021).
[3] Chang Y D, Wang Z F, Zhang X Y et al. Waveguide optimization and efficiency characteristic analysis of 808 nm laser diodes[J]. Chinese Journal of Luminescence, 42, 1040-1048(2021).
[4] Kaifuchi Y, Yoshida K, Yamagata Y et al. Enhanced power conversion efficiency in 900-nm range single emitter broad stripe laser diodes maintaining high power operability[J]. Proceedings of SPIE, 10900, 109000F(2019).
[5] Ren Z Q, Li Q M, Li B et al. High wall-plug efficiency 808-nm laser diodes with a power up to 30.1 W[J]. Journal of Semiconductors, 41, 032901(2020).
[6] Sumpf B, Hasler K H, Adamiec P et al. High-brightness quantum well tapered lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 1009-1020(2009).
[7] Kintzer E S, Walpole J N, Chinn S R et al. High-power, strained-layer amplifiers and lasers with tapered gain regions[J]. IEEE Photonics Technology Letters, 5, 605-608(1993).
[8] Paschke K, Sumpf B, Dittmar F et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 1223-1227(2005).
[9] Adamiec P, Sumpf B, Feise D et al. Twin-contact 645-nm tapered laser with 500-mW output power[J]. IEEE Photonics Technology Letters, 21, 236-238(2009).
[10] Michel N, Odriozola H, Kwok C et al. High modulation efficiency and high power 1060 nm tapered lasers with separate contacts[J]. Electronics Letters, 45, 103-104(2009).
[11] Sujecki S, Borruel L, Wykes J et al. Nonlinear properties of tapered laser cavities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 823-834(2003).
[12] Li J, Liu Y Y, Ma X Y. High-brightness tapered diode lasers emitting at 980 nm with electrically separated ridge waveguide and tapered section[J]. Chinese Journal of Semiconductors, 28, 1302-1306(2007).
[13] Man Y X, Zhong L, Ma X Y et al. 975 nm semiconductor lasers with ultra-low internal optical loss[J]. Acta Optica Sinica, 40, 1914001(2020).
[14] Man Y X, Zhong L, Ma X Y et al. Characteristic analysis of 975 nm tapered semiconductor lasers with separated contacts[J]. Chinese Journal of Lasers, 48, 1701005(2021).
[15] Mikulla M, Schmitt A, Chazan P et al. Improved beam quality for high-power tapered laser diodes with LMG (low-modal-gain) epitaxial layer structures[J]. Proceedings of SPIE, 3284, 72-79(1998).
[16] Wang X Z, Erbert G, Wenzel H et al. 17-W near-diffraction-limited 970-nm output from a tapered semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 25, 115-118(2013).
[17] Sun S M, Fan J, Xu L et al. Design and optimization of 976 nm tapered semiconductor laser[J]. Infrared and Laser Engineering, 46, 1205004(2017).
[18] Snjecki S, Wykes J, Sewell P et al. Optical properties of tapered laser cavities[C], 55-58(2001).
[19] Huang S S, Zhang Y, Liao Y P et al. High-power single-spatial-mode GaSb tapered laser around 2.0 μm with very small lateral beam divergence[J]. Chinese Physics Letters, 24, 66-69(2017).
[20] Wang Z H, Wang J H, Liu S N et al. Numerical simulation on output characteristics of 980 nm tapered semiconductor lasers[J]. Chinese Journal of Luminescence, 43, 275-284(2022).
[21] Kaunga-Nyirenda S, Bull S, Lim J et al. Factors influencing brightness and beam quality of conventional and distributed Bragg reflector tapered laser diodes in absence of self-heating[J]. IET Optoelectronics, 8, 99-107(2014).
[22] Müller A, Fricke J, Bugge F et al. DBR tapered diode laser at 1030 nm with nearly diffraction-limited narrowband emission and 12.7 W of optical output power[J]. Proceedings of SPIE, 9767, 97671I(2016).
[23] Liu L, Qu H W, Wang Y F et al. High-brightness single-mode double-tapered laser diodes with laterally coupled high-order surface grating[J]. Optics Letters, 39, 3231-3234(2014).
[24] Sheem S K, Vojak B A. Broad-area semiconductor lasers with gain-length variation for lateral mode control: the bow-tie geometry laser[J]. Journal of Applied Physics, 63, 248-250(1988).
[25] Bo B X, Gao X, Wang L et al. Rhombus-like stripe BA InGaAs-AlGaAs-GaAs lasers[J]. IEEE Photonics Technology Letters, 16, 1248-1249(2004).
[26] Crump P, Leisher P, Matson T et al. Control of optical mode distribution through etched microstructures for improved broad area laser performance[J]. Applied Physics Letters, 92, 131113(2008).
[27] Chen C, Leisher P, Patterson S et al. Stabilization of lateral mode transients in high-power broad area semiconductor lasers[J]. Applied Physics Letters, 94, 011107(2009).
[28] Rong J M, Xing E B, Zhang Y et al. Low lateral divergence 2 μm InGaSb/AlGaAsSb broad-area quantum well lasers[J]. Optics Express, 24, 7246-7252(2016).
[29] Rong J M, Xing E B, Wang L J et al. Control of lateral divergence in high-power, broad-area photonic crystal lasers[J]. Applied Physics Express, 9, 072104(2016).
[30] Wang T, Tong C Z, Wang L J et al. Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation[J]. Applied Physics Express, 9, 112102(2016).
[31] Wang T, Wang L J, Shu S L et al. Suppression of far-field blooming in high-power broad-area diode lasers by optimizing gain distribution[J]. Chinese Optics Letters, 15, 071404(2017).
[32] Qi J, Zou Y G, Fan J et al. 1064 nm wide-ridge waveguide semiconductor laser with lateral microstructure[J]. Chinese Journal of Lasers, 48, 1301003(2021).
[33] Kalosha V P, Posilovic K, Bimberg D. Lateral-longitudinal modes of high-power inhomogeneous waveguide lasers[J]. IEEE Journal of Quantum Electronics, 48, 123-128(2012).
[34] Kaspi R, Luong S, Bate T et al. Distributed loss method to suppress high order modes in broad area quantum cascade lasers[J]. Applied Physics Letters, 111, 201109(2017).
[35] Miah M J, Strohmaier S, Urban G et al. Beam quality improvement of high-power semiconductor lasers using laterally inhomogeneous waveguides[J]. Applied Physics Letters, 113, 221107(2018).
[36] Li D Y, Huang Y Z, Zhu J J et al. Thermal lensing effect in ridge structure InGaN multiple quantum well laser diodes[J]. Journal of Applied Physics, 100, 046101(2006).
[37] Rieprich J, Winterfeldt M, Kernke R et al. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers[J]. Journal of Applied Physics, 123, 125703(2018).
[38] Bai J G, Leisher P, Zhang S G et al. Mitigation of thermal lensing effect as a brightness limitation of high-power broad area diode lasers[J]. Proceedings of SPIE, 7953, 79531F(2011).
[39] Piprek J. Inverse thermal lens effects on the far-field blooming of broad area laser diodes[J]. IEEE Photonics Technology Letters, 25, 958-960(2013).
[40] Zhao B Y, Jing H Q, Zhong L et al. Improving slow axis beam quality of 808 nm broad-area laser diodes with adiabatic package[J]. Chinese Journal of Luminescence, 40, 1417-1427(2019).
[41] Xie P F, Lei J, Lü W Q et al. Experimental investigation of the package of diode laser chip based on lateral heat flow suppression[J]. High Power Laser and Particle Beams, 33, 021003(2021).
[42] Cai Y H, Gao X, Wang J H et al. Output characteristics of broad-area stripe semiconductor lasers with microthermal channel anode structure[J]. Chinese Journal of Luminescence, 42, 518-525(2021).
[43] Kuc M, Wasiak M, Sarzała R P. Impact of heat spreaders on thermal performance of III-N-based laser diode[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5, 474-482(2015).
[44] Dai W, Li J Q, Cao J et al. Thermal performance of high power semiconductor lasers packaged on CVD diamond heatsink[J]. Journal of Optoelectronics·Laser, 30, 227-233(2019).
[45] Sun R, Fang Y S, Peng H T et al. Study on characteristics of diamond packaged semiconductor laser[J]. Practical Electronics, 88-90(2020).
[46] Zhang Y, Han H X, Wang N et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials, 25, 4430-4435(2015).
[47] Ni Y X, Jing H Q, Kong J X et al. Thermal performance of high-power laser diodes packaged by SiC ceramic submount[J]. Chinese Journal of Lasers, 45, 0101002(2018).