• Acta Photonica Sinica
  • Vol. 52, Issue 11, 1106004 (2023)
Geliang XU1,*, Shiliang XING2, Song YE1, Jiaqi DENG1, and Man ZHANG1
Author Affiliations
  • 1School of Electronic Engineering,Chaohu University,Hefei 238000,China
  • 2School of Machinery and Electronics Engineering,Jingdezhen University,Jingdezhen 333000,China
  • show less
    DOI: 10.3788/gzxb20235211.1106004 Cite this Article
    Geliang XU, Shiliang XING, Song YE, Jiaqi DENG, Man ZHANG. Reconfigurable and Storable Chaotic Logic Operations with the Performance of Error Detection and Correction[J]. Acta Photonica Sinica, 2023, 52(11): 1106004 Copy Citation Text show less
    The setup for chaotic system of drive-response VCSELs
    Fig. 1. The setup for chaotic system of drive-response VCSELs
    Dynamic state evolutions of polarized light x-PCD1,y-PCD1,x-PCR and y-PCR in the parameter space ED and μD
    Fig. 2. Dynamic state evolutions of polarized light x-PCD1y-PCD1x-PCR and y-PCR in the parameter space ED and μD
    Dynamic evolutions of the correlation function within the parameter space of the applied electric field and the normalized injection current
    Fig. 3. Dynamic evolutions of the correlation function within the parameter space of the applied electric field and the normalized injection current
    The evolution curves of the correlation function with the change of the normalized injection current when the applied electric field is 0.434 3 kV/mm,0.583 kV/mm,0.73 kV/mm and 1 kV/mm
    Fig. 4. The evolution curves of the correlation function with the change of the normalized injection current when the applied electric field is 0.434 3 kV/mm,0.583 kV/mm,0.73 kV/mm and 1 kV/mm
    Reconfigurable and storable chaotic logic OR,NAND,AND,XNOR,XOR and NOR operations
    Fig. 5. Reconfigurable and storable chaotic logic OR,NAND,AND,XNOR,XOR and NOR operations
    Effect of noise strength D=1×109 on logic outputs Z1,Z2,Z3 and Z4
    Fig. 6. Effect of noise strength D=1×109 on logic outputs Z1Z2Z3 and Z4
    Effect of noise strength D=1.77×109 on logic outputs Z1,Z2,Z3and Z4
    Fig. 7. Effect of noise strength D=1.77×109 on logic outputs Z1Z2Z3and Z4
    Effect of noise strength D=1.84×109 on logic outputs Z1,Z2,Z3 and Z4
    Fig. 8. Effect of noise strength D=1.84×109 on logic outputs Z1Z2Z3 and Z4
    Effect of noise strength D=1.89×109 on logic outputs Z1,Z2,Z3 and Z4
    Fig. 9. Effect of noise strength D=1.89×109 on logic outputs Z1Z2Z3 and Z4
    The evolution of the success probability P with the time delay τc
    Fig. 10. The evolution of the success probability P with the time delay τc
    ParametersValueParametersValue
    Line-width enhancement factor a3Duty ratio R0.5
    field decay rate k300Polar angle θ1/2
    Spin relaxation rate γs/ns-150Azimuth φ/(o0
    Nonradiative carrier relaxation γe/ns-11The noise strength D108
    Dichroism γa /ns-1-0.1Poled period of crystal Λ/m-15.8×105
    Birefringence γp /ns-12Crystal length L/mm15
    Delay time τ/ns2Refractive index of o-light n12.24
    Delay time τc/ns5Refractive index of e-light n22.17
    Bit duration time/ns10Differential material gain g/(s·m-32.9×10-12
    Effective area of light spot SA/μm238.485wave length λ0/nm1 550
    Length of the laser cavity LV/μm10Field confinement factor to the active region Г0.05
    Effective refractive index of active layer ng3.6Optical feedback strength kf/ns-11.13
    Volume of the active layer V/μm3384.85Optical injection strength kinj/ns-11.13
    Table 1. Main system parameters
    Logic operationsI1I2)=(0,0)I1I2)=(0,1)/(1,0)I1I2)=(1,1)
    CfADxARxCfADxARxCfADxARx
    Cf=I1·I20

    ADxmax=1.1×10-4

    ARxmax=1.0×10-4

    0

    ADxmax=0.002

    ARxmax=0.002

    1

    ADxmin=0.028

    ARxmin=0.025

    Cf=I1I2¯1

    ADxmin=0.029

    ARxmin=0.038

    1

    ADxmin=0.027

    ARxmin=0.024

    0

    ADxmax=7.5×10-4

    ARxmax=0.003

    Cf=I1+I20

    ADxmax=2.5×10-4

    ARxmax=0.003 3

    1

    ADxmin=0.027

    ARxmin=0.022

    1

    ADxmin=0.028

    ARxmin=0.033

    Cf=I1+I2¯1

    ADxmin=0.029

    ARxmin=0.028

    0

    ADxmax=1.07×10-4

    ARxmax=0.006 4

    0

    ADxmax=1.1×10-4

    ARxmax=1.0×10-4

    Cf=I1I20

    ADxmax=5.3×10-4

    ARxmax=0.003

    1

    ADxmin=0.029

    ARxmin=0.024

    0

    ADxmax=6.2×10-4

    ARxmax=0.004

    Cf=I1I21

    ADxmin=0.029

    ARxmin=0.028

    0

    ADxmax=0.002

    ARxmax=0.005

    1

    ADxmin=0.029

    ARxmin=0.028

    Table 2. Maximum of the mean values of IDxt)and IRxt)for Cf=0 and minimum of the mean values of IDxt)and IRxt)for Cf=1 for different logic operations that Cf and the logic inputs satisfy
    Logic operationsI1I2)=(0,0)I1I2)=(0,1)/(1,0)I1I2)=(1,1)
    CfMxMyCfMxMyCfMxMy
    Cf=I1·I20

    Mxmax=2.67×10-5

    Mymax=3.75×10-4

    0

    Mxmax=2.15×10-4

    Mymax=1.46×10-4

    1

    Mxmin=0.001 7

    Mymin=0.001 4

    Cf=I1I2¯1

    Mxmin=0.002 5

    Mymin=0.001 3

    1

    Mxmin=0.001 7

    Mymin=0.003

    0

    Mxmax=4.13×10-5

    Mymax=5.38×10-4

    Cf=I1+I20

    Mxmax=1.35×10-4

    Mymax=1.01×10-4

    1

    Mxmin=0.002 5

    Mymin=0.002 6

    1

    Mxmin=7.75×10-4

    Mymin=0.002 1

    Cf=I1+I2¯1

    Mxmin=0.001 3

    Mymin=0.001 9

    0

    Mxmax=1.58×10-4

    Mymax=5.91×10-5

    0

    Mxmax=7.26×10-5

    Mymax=1.48×10-5

    Cf=I1I20

    Mxmax=1.36×10-5

    Mymax=2.08×10-5

    1

    Mxmin=0.002 9

    Mymin=0.002 6

    0

    Mxmax=1.4×10-5

    Mymax=1.77×10-5

    Cf=I1I21

    Mxmin=9.99×10-4

    Mymin=0.002

    0

    Mxmax=4.34×10-5

    Mymax=1.01×10-4

    1

    Mxmin=9.92×10-4

    Mymin=0.001 6

    Table 3. Maximum of the mean square errors of SEx and SEywhen Cf=0 and minimum of the mean square errors of SEx and SEy when Cf=1 for different logic operations that Cf and the logic inputs satisfy
    Geliang XU, Shiliang XING, Song YE, Jiaqi DENG, Man ZHANG. Reconfigurable and Storable Chaotic Logic Operations with the Performance of Error Detection and Correction[J]. Acta Photonica Sinica, 2023, 52(11): 1106004
    Download Citation