• Laser & Optoelectronics Progress
  • Vol. 51, Issue 12, 121403 (2014)
Li Jianzhong*, Li Xiangfeng, Zuo Dunwen, Xu Ruihua, and Chen Zhu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.121403 Cite this Article Set citation alerts
    Li Jianzhong, Li Xiangfeng, Zuo Dunwen, Xu Ruihua, Chen Zhu. Process Test and Temperature Field Simulation of the Al/Ti Laser Cladding Coating Above 7050 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121403 Copy Citation Text show less
    References

    [1] Johansen H D, Brett C M A, Motheo A J. Corrosion protection of aluminium alloy by cerium conversion and conducting polymer duplex coatings[J]. Corrosion Science, 2012, 63: 342-350.

    [2] Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater Sci Eng A, 2012, 542: 79-87.

    [3] Wang Xiaoyan, Chen Jing, Lin Xin, et al.. Microstructure of laser forming repair 7050 aluminum alloy with AlSi12 powder[J]. Chinese J Lasers, 2009, 36(6): 1585-1590.

    [4] S PalDey, S C Deevi, T L Alford. Cathodic arc deposited thin film coatings based on TiAl intermetallics[J]. Intermetallics, 2004, 12 (7-9): 985-991.

    [5] Uenishi K, Kobayashi K F. Formation of surface layer based on Al3Ti on aluminum by laser cladding and its compatibility with ceramics[J]. Intermetallics, 1999, 7(5): 553-559.

    [6] Guo B G, Zhou J S, Zhang S T, et al.. Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding[J]. Applied Surface Science, 2007, 253(24): 9301-9310.

    [7] Garcia I, Fuente J dela, Damborenea J J de. (Ti,Al)/(Ti,Al)N coatings produced by laser surface alloying[J]. Materials Letters, 2002, 53 (1-2): 44-51.

    [8] Hao Jianjun, Li Huiping, Ma Yuejin, et al.. Experimental investigation on repairing iron cast parts with grit-blasting pretreatment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003, 34(4): 120-126.

    [9] Emamian A, Corbin S F, Khajepour A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings[J]. Surface and Coatings Technology, 2010, 205(7): 2007-2015.

    [10] Chen Gang, Li Xiangfeng, Zuo Dunwen, et al.. Simulation on substrate relative dilution ratio for GH4033[J]. Laser & Optoelectronics Progress, 2011, 48(1): 011601.

    [11] Liu Hao, Yu Gang, He Xiuli, et al.. Three-dimensional numerical simulation of transient temerature field and coating gemometry in power feeding laser cladding[J]. Chinese J Lasers, 2013, 40(12): 1203007.

    [12] Qi H, Mazumder J Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition[J]. Journl of Applied Physics, 2006, 100(2): 024903.

    [13] Jiang Shihao, Li Xiangfeng, Zuo Dunwen, et al.. Simulation on laser cladding temperature field of high-temperature alloy based on preset squash[J]. Ordnance Material Science and Engineering, 2011, 34(4): 23-27.

    [14] Lu Qinglong, Wang Yanfang, Li Li, et al.. Effects of scanning speed on microstructures and properties of laser cladding Fe-based amorphous composite coatings[J]. Chinese J Lasers, 2013, 40(2): 0203007.

    Li Jianzhong, Li Xiangfeng, Zuo Dunwen, Xu Ruihua, Chen Zhu. Process Test and Temperature Field Simulation of the Al/Ti Laser Cladding Coating Above 7050 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121403
    Download Citation