• Optical Instruments
  • Vol. 45, Issue 4, 24 (2023)
Han YANG, Baicheng LI*, and Lingling CHEN*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093
  • show less
    DOI: 10.3969/j.issn.1005-5630.2023.004.004 Cite this Article
    Han YANG, Baicheng LI, Lingling CHEN. Improved Res-UNet-based vascular segmentation of retinal images[J]. Optical Instruments, 2023, 45(4): 24 Copy Citation Text show less
    References

    [1] YOU X G, PENG Q M, YUAN Y, et al. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach[J]. Pattern Recognition, 44, 2314-2324(2011).

    [3] BOUKADIDA R, ELLOUMI Y, AKIL M, et al. Mobile-aided screening system for proliferative diabetic retinopathy[J]. International Journal of Imaging Systems and Technology, 31, 1638-1654(2021).

    [4] BUDAI A, BOCK R, MAIER A, et al. Robust vessel segmentation in fundus images[J]. International Journal of Biomedical Imaging, 2013, 154860(2013).

    [5] GEETHARAMANI R, BALASUBRAMANIAN L. Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis[J]. Biocybernetics and Biomedical Engineering, 36, 102-118(2016).

    [6] HORIE S, KUKIMOTO N, KAMOI K, et al. Blue widefield images of scanning laser ophthalmoscope can detect retinal ischemic areas in eyes with diabetic retinopathy[J]. Asia-Pacific Journal of Ophthalmology, 10, 478-485(2021).

    [7] DASH J, BHOI N. A thresholding based technique to extract retinal blood vessels from fundus images[J]. Future Computing and Informatics Journal, 2, 103-109(2017).

    [8] IMANI E, JAVIDI M, POURREZA H R. Improvement of retinal blood vessel detection using morphological component analysis[J]. Computer Methods and Programs in Biomedicine, 118, 263-279(2015).

    [9] ZHU C Z, ZOU B J, ZHAO R C, et al. Retinal vessel segmentation in colour fundus images using Extreme Learning Machine[J]. Computerized Medical Imaging and Graphics, 55, 68-77(2017).

    [10] GUO C L, SZEMENYEI M, YI Y G, et al. SAU: spatial attention U f retinal vessel segmentation[C]Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy: IEEE, 2021: 1236 1242.

    [11] XIAO X, LIAN S, LUO Z M, et al. Weighted ResU f highquality retina vessel segmentation[C]2018 9th International Conference on Infmation Technology in Medicine Education (ITME). Hangzhou, China: IEEE, 2018: 327 331.

    [12] SOOMRO T A, AFIFI A J, GAO J B, et al. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation[J]. Expert Systems with Applications, 134, 36-52(2019).

    [13] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).

    [14] BADRINARAYANAN V, HA A, CIPOLLA R. Seg: a deep convolutional encoderdecoder architecture f robust semantic pixelwise labelling[J]. arXiv: 1505.07293.

    [15] STAAL J, ABRAMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).

    [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning f image recognition[C]2016 IEEE Conference on Computer Vision Pattern Recognition. Las Vegas: IEEE, 2016: 770 778.

    [17] WANG X L, GIRSHICK R, GUPTA A, et al. Nonlocal neural wks[C]Proceedings of the IEEECVF Conference on Computer Vision Pattern Recognition. Salt Lake City: IEEE, 2018: 7794 7803.

    [18] RONNEBERGER O, FISCHER P, BROX T. U: convolutional wks f biomedical image segmentation[C]18th International Conference on Medical Image Computing ComputerAssisted Intervention. Munich: Springer, 2015: 234 241.

    [19] ALOM Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[J]. arXiv:, 06955, 2018(1802).

    [20] ALOM Z, YAKOPCIC C, HASAN M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 6, 014006(2019).

    [21] WANG S L, YIN Y L, CAO G B, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 149, 708-717(2015).

    [22] ISKOWSKI P, KRAWIEC K. Segmenting retinal blood vessels with deep neural networks[J]. IEEE Transactions on Medical Imaging, 35, 2369-2380(2016).

    [23] JIN Q G, MENG Z P, PHAM T D, et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 178, 149-162(2019).

    [24] JIANG Y, TAN N, PENG T T, et al. Retinal vessels segmentation based on dilated multi-scale convolutional neural network[J]. IEEE Access, 7, 76342-76352(2019).

    [25] MARÍN D, AQUINO A, GEGUNDEZ-ARIAS M E, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features[J]. IEEE Transactions on Medical Imaging, 30, 146-158(2011).

    [26] LI Q L, FENG B W, XIE L P, et al. A cross-modality learning approach for vessel segmentation in retinal images[J]. IEEE Transactions on Medical Imaging, 35, 109-118(2016).

    [27] WANG X H, JIANG X D, REN J F. Blood vessel segmentation from fundus image by a cascade classification framework[J]. Pattern Recognition, 88, 331-341(2019).

    Han YANG, Baicheng LI, Lingling CHEN. Improved Res-UNet-based vascular segmentation of retinal images[J]. Optical Instruments, 2023, 45(4): 24
    Download Citation