• Laser & Optoelectronics Progress
  • Vol. 62, Issue 3, 0306001 (2025)
Taifei Zhao1,2,*, Haochen Du1, Yuqi Chen1, Borui Zheng1, and Shuang Zhang1
Author Affiliations
  • 1Faculty of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, Shaanxi , China
  • 2Key Laboratory of Wireless Optical Communication and Network Research in Xi’an City, Xi’an University of Technology, Xi’an 710048, Shaanxi , China
  • show less
    DOI: 10.3788/LOP241281 Cite this Article Set citation alerts
    Taifei Zhao, Haochen Du, Yuqi Chen, Borui Zheng, Shuang Zhang. Improved Particle Swarm Path Planning for Ultraviolet Cooperative Drone Penetration[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0306001 Copy Citation Text show less
    Plan diagram for maintaining the leading link within the formation. (a) Airborne hemispherical MIMO model; (b) maintaining the UV light guidance link among multiple machines
    Fig. 1. Plan diagram for maintaining the leading link within the formation. (a) Airborne hemispherical MIMO model; (b) maintaining the UV light guidance link among multiple machines
    Chaos distribution
    Fig. 2. Chaos distribution
    Pseudo code of the MRPSO algorithm
    Fig. 3. Pseudo code of the MRPSO algorithm
    Terrain threat model. (a) UAV cluster terrain collision map; (b) UAV formation topology map
    Fig. 4. Terrain threat model. (a) UAV cluster terrain collision map; (b) UAV formation topology map
    Rendering of penetration path planning in radar-free environments. (a) Front view; (b) side view
    Fig. 5. Rendering of penetration path planning in radar-free environments. (a) Front view; (b) side view
    Convergence curve of fitness value in radar-free environments
    Fig. 6. Convergence curve of fitness value in radar-free environments
    Distribution of simulation results in radar-free environments. (a) Fitness value; (b) penetration success rate
    Fig. 7. Distribution of simulation results in radar-free environments. (a) Fitness value; (b) penetration success rate
    Effect diagram of penetration path planning in complex radar environments. (a) Front view; (b) side view
    Fig. 8. Effect diagram of penetration path planning in complex radar environments. (a) Front view; (b) side view
    Fitness value convergence curve in complex radar environments
    Fig. 9. Fitness value convergence curve in complex radar environments
    Distribution of penetration success rate in complex radar environments. (a) Ultraviolet collaboration; (b) radio collaboration
    Fig. 10. Distribution of penetration success rate in complex radar environments. (a) Ultraviolet collaboration; (b) radio collaboration
    Distribution of fitness values in complex radar environments. (a) Ultraviolet collaboration; (b) radio collaboration
    Fig. 11. Distribution of fitness values in complex radar environments. (a) Ultraviolet collaboration; (b) radio collaboration
    Comparison of different collaboration methods across four algorithms. (a) Penetration success rate; (b) fitness value
    Fig. 12. Comparison of different collaboration methods across four algorithms. (a) Penetration success rate; (b) fitness value
    ParameterSymbolValue
    Particle population sizeM50
    Maximum iteration timestmax100
    Maximum social coefficientc1max2.5
    Minimum social coefficientc1min0.5
    Maximum cognitive coefficientc2max2.5
    Minimum cognitive coefficientc2min0.5
    Maximum inertia coefficientωmax1
    Minimum inertia coefficientωmin0.4
    Chaotic distribution coefficientr0.7
    Simulation space100×100×100
    Initial positionstartpos(1,1,1)
    Final positiongoalpos(100,100,30)
    Current particle indexi
    Current generation indext
    Table 1. Algorithm parameters
    AlgorithmCollision rate /%Path length /kmEnergy consumption rate /%Penetration success rate /%Fitness value
    PSO7.501.5913.2579.25219.49
    SPSO26.251.5412.8157.19286.29
    MGPSO11.251.5913.2979.22216.29
    MRPSO01.5713.1086.90187.29
    Table 2. Simulation results in radar-free environments
    Radar serial numberCoordinateRadius /kmHeight /kmRadar detection probability /%
    1(40,50)0.10.920
    2(50,20)0.10.920
    3(20,85)0.10.920
    4(65,88)0.10.920
    5(85,55)0.10.920
    Table 3. Radar detection area parameters
    AlgorithmCollision rate /%Path length /kmRadar exposure probability /%Energy consumption rate /%Penetration success rate /%Fitness value
    PSO3.751.7519.6914.5761.99254.22
    SPSO33.751.4916.8113.2436.19321.31
    MGPSO01.6520.8213.8765.32232.81
    MRPSO01.745.3414.4880.18217.74
    Table 4. Simulation results table in complex radar environments
    Taifei Zhao, Haochen Du, Yuqi Chen, Borui Zheng, Shuang Zhang. Improved Particle Swarm Path Planning for Ultraviolet Cooperative Drone Penetration[J]. Laser & Optoelectronics Progress, 2025, 62(3): 0306001
    Download Citation