• Study On Optical Communications
  • Vol. 50, Issue 3, 23001601 (2024)
Xi WANG1,2, Lei DENG1, Kunyu TAO3, Sen FU3..., Qi YANG1,7,**, Xiaoxiao DAI1,7, Zhewei CAO3, Qin SHEN4, Chen LIU1 and Songnian FU5,6,*|Show fewer author(s)
Author Affiliations
  • 1School of Optical and Electronic Information, HUST, Wuhan 430074, China
  • 2National Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan 430074, China
  • 3Shanghai Radio Equipment Research Institute, Shanghai 201109, China
  • 4Shanghai Research Institute of Aerospace Technology, Shanghai 201109, China
  • 5School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 6Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangzhou 510006, China
  • 7Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, China
  • show less
    DOI: 10.13756/j.gtxyj.2024.230016 Cite this Article
    Xi WANG, Lei DENG, Kunyu TAO, Sen FU, Qi YANG, Xiaoxiao DAI, Zhewei CAO, Qin SHEN, Chen LIU, Songnian FU. Research on the Integration of Space Laser Communication and Ranging[J]. Study On Optical Communications, 2024, 50(3): 23001601 Copy Citation Text show less
    Dual one way ranging schematic diagram
    Fig. 1. Dual one way ranging schematic diagram
    The block diagram of the overall system
    Fig. 2. The block diagram of the overall system
    The block diagram of system main function module
    Fig. 3. The block diagram of system main function module
    The test diagram of the real-time communication ranging integrated system
    Fig. 4. The test diagram of the real-time communication ranging integrated system
    BER and signal constellation of the transmission experiment
    Fig. 5. BER and signal constellation of the transmission experiment
    Ranging images under different modulation formats and rates
    Fig. 6. Ranging images under different modulation formats and rates
    Simulation flow chart
    Fig. 7. Simulation flow chart
    Frequency/phase discrimination sampling waveform and filtered waveform
    Fig. 8. Frequency/phase discrimination sampling waveform and filtered waveform
    Waveform and zero-crossing decision after frequency/phase discrimination filtering
    Fig. 9. Waveform and zero-crossing decision after frequency/phase discrimination filtering
    Relative error of frequency/phase discrimination
    Fig. 10. Relative error of frequency/phase discrimination
    速率/格式实际改变距离/ps计算出的均值距离/ps误差/ps
    5 G QPSK200192.2387.762
    2.5 G BPSK600516.10283.898
    1.25 G BPSK100118.02118.021
    625 M BPSK10084.80215.198
    625 M BPSK600668.59068.590
    Table 1. Ranging accuracy under different modulation formats and rates
    参数/文献测距精度/cm通信速率/Gbit/s通信体制
    LLCD[6]3.000.622IM/DD
    文献[9]±3.0010IM/DD
    文献[10]0.7810相干/QPSK
    本文方案±0.365/2.5/1.25/0.625相干/(QPSK/BPSK)
    Table 2. The performances of the proposed method and the existing reports
    Xi WANG, Lei DENG, Kunyu TAO, Sen FU, Qi YANG, Xiaoxiao DAI, Zhewei CAO, Qin SHEN, Chen LIU, Songnian FU. Research on the Integration of Space Laser Communication and Ranging[J]. Study On Optical Communications, 2024, 50(3): 23001601
    Download Citation