• Advanced Photonics
  • Vol. 6, Issue 4, 046003 (2024)
Shuangyou Zhang1, Toby Bi1,2, and Pascal Del’Haye1,2,*
Author Affiliations
  • 1Max Planck Institute for the Science of Light, Erlangen, Germany
  • 2Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
  • show less
    DOI: 10.1117/1.AP.6.4.046003 Cite this Article Set citation alerts
    Shuangyou Zhang, Toby Bi, Pascal Del’Haye, "On-the-fly precision spectroscopy with a dual-modulated tunable diode laser and Hz-level referencing to a cavity," Adv. Photon. 6, 046003 (2024) Copy Citation Text show less
    References

    [1] K. Shimoda, K. Shimoda. Introduction. High-Resolution Laser Spectroscopy, 1-10(1976).

    [2] D. J. Jones et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [3] R. Holzwarth et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett., 85, 2264-2267(2000).

    [4] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [5] M. Takamoto et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics, 14, 411-415(2020).

    [6] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [7] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [8] A. Marian et al. United time-frequency spectroscopy for dynamics and global structure. Science, 306, 2063-2068(2004).

    [9] F. Keilmann, C. Gohle, R. Holzwarth. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett., 29, 1542-1544(2004).

    [10] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [11] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2007).

    [12] J. Mandon, G. Guelachvili, N. Picqué. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics, 3, 99-102(2009).

    [13] Q.-F. Yang et al. Vernier spectrometer using counterpropagating soliton microcombs. Science, 363, 965-968(2019).

    [14] S. Pan, M. Xue. Ultrahigh-resolution optical vector analysis based on optical single-sideband modulation. J. Lightwave Technol., 35, 836-845(2017).

    [15] Y.-H. Luo et al. A wideband, high-resolution vector spectrum analyzer for integrated photonics. Light Sci. Appl., 13, 83(2024).

    [16] D. K. Gifford et al. Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion. Appl. Opt., 44, 7282-7286(2005).

    [17] S. Fujii, T. Tanabe. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics, 9, 1087-1104(2020).

    [18] C. Jin et al. High-resolution optical spectrum characterization using optical channel estimation and spectrum stitching technique. Opt. Lett., 38, 2314-2316(2013).

    [19] J. Li et al. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express, 20, 26337-26344(2012).

    [20] P. Del’Haye et al. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photonics, 3, 529-533(2009).

    [21] T. Qing et al. Optical vector analysis with attometer resolution, 90-dB dynamic range and THz bandwidth. Nat. Commun., 10, 5135(2019).

    [22] J. Liu et al. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers. Opt. Lett., 41, 3134-3137(2016).

    [23] K. Twayana et al. Frequency-comb-calibrated swept-wavelength interferometry. Opt. Express, 29, 24363-24372(2021).

    [24] E. Baumann et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements. Opt. Lett., 38, 2026-2028(2013).

    [25] W. Yu et al. Comb-calibrated frequency sweeping interferometry for absolute distance and vibration measurement. Opt. Lett., 44, 5069-5072(2019).

    [26] F. R. Giorgetta et al. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nat. Photonics, 4, 853-857(2010).

    [27] K. Knabe et al. Frequency characterization of a swept- and fixed-wavelength external-cavity quantum cascade laser by use of a frequency comb. Opt. Express, 20, 12432-12442(2012).

    [28] E. Baumann et al. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt. Express, 22, 24914-24928(2014).

    [29] A. Nishiyama, D. Ishikawa, M. Misono. High resolution molecular spectroscopic system assisted by an optical frequency comb. J. Opt. Soc. Am. B, 30, 2107-2112(2013).

    [30] C. Fredrick et al. Thermal-light heterodyne spectroscopy with frequency comb calibration. Optica, 9, 221-230(2022).

    [31] M. Ding et al. Optical fiber delay lines in microwave photonics: sensitivity to temperature and means to reduce it. J. Lightwave Technol., 39, 2311-2318(2021).

    [32] A. Frigg et al. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films. Opt. Express, 27, 37795-37805(2019).

    [33] S. Zhang et al. Low-temperature sputtered ultralow-loss silicon nitride for hybrid photonic integration. Laser Photonics Rev., 18, 2300642(2024).

    [34] V. Brasch et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [35] S. Zhang et al. Spectral extension and synchronization of microcombs in a single microresonator. Nat. Commun., 11, 6384(2020).

    [36] Z. Tang, S. Pan, J. Yao. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Opt. Express, 20, 6555-6560(2012).

    [37] T. Herr et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [38] P. Del’Haye et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [39] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [40] S. Zhang et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [41] G. Guelachvili. Absolute wavenumber measurements of 1-0, 2-0, HF and 2-0, H35Cl, H37Cl absorption bands. Opt. Commun., 19, 150-154(1976).

    [42] G. Guelachvili, M. A. H. Smith. Measurements of pressure-induced shifts in the 1-0 and 2-0 bands of HF and in the 2-0 bands of H35Cl and H37Cl. J. Quantum Spectrosc. Radiat. Transf., 20, 35-47(1978).

    [43] I. E. Gordon et al. The HITRAN2016 molecular spectroscopic database. J. Quantum Spectrosc. Radiat. Transf., 203, 3-69(2017).

    [44] N. Y. Dmitriev et al. Measurement of dispersion characteristics of integrated optical microresonators and generation of coherent optical frequency combs. J. Exp. Theor. Phys., 135, 9-19(2022).

    [45] Z. He et al. Simple and accurate dispersion measurement of GaN microresonators with a fiber ring. Opt. Lett., 48, 2182-2185(2023).

    [46] A. Shkarin et al. Nanoscopic charge fluctuations in a gallium phosphide waveguide measured by single molecules. Phys. Rev. Lett., 126, 133602(2021).

    [47] L. Yang et al. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air. Appl. Opt., 56, 3109-3115(2017).

    [48] D. I. Herman et al. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Sci. Adv., 7, eabe9765(2021).

    [49] G. B. Rieker et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica, 1, 290-298(2014).

    [50] S. Coburn et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer. Optica, 5, 320-327(2018).

    [51] A. Nishiyama, A. Matsuba, M. Misono. Precise frequency measurement and characterization of a continuous scanning single-mode laser with an optical frequency comb. Opt. Lett., 39, 4923-4926(2014).

    [52] S. Minardi, R. J. Harris, L. Labadie. Astrophotonics: astronomy and modern optics. Astron. Astrophys. Rev., 29, 6(2021).

    Shuangyou Zhang, Toby Bi, Pascal Del’Haye, "On-the-fly precision spectroscopy with a dual-modulated tunable diode laser and Hz-level referencing to a cavity," Adv. Photon. 6, 046003 (2024)
    Download Citation