[1] Guenther G. Airborne laser hydrography: system design and performance factors[R](1985).
[2] Guenther G C, Cunningham A G, Larocque P E et al. Meeting the accuracy challenge in airborne LiDAR bathymetry[C], 1-27(2000).
[3] Liang G, Zhao X L, Zhao J H et al. Feature selection and mislabeled waveform correction for water-land discrimination using airborne infrared laser[J]. Remote Sensing, 13, 3628(2021).
[4] Mandlburger G, Pfennigbauer M, Pfeifer N. Analyzing near water surface penetration in laser bathymetry-a case study at the River Pielach[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Ⅱ-5/W2, 175-180(2013).
[5] Zhou G Q, Hu H C, Xu J S et al. Design of LiDAR optical machine system for airborne single frequency bathymetry[J]. Infrared and Laser Engineering, 50, 20200297(2021).
[6] Fuchs E, Tuell G. Conceptual design of the CZMIL data acquisition system (DAS): integrating a new bathymetric lidar with a commercial spectrometer and metric camera for coastal mapping applications[J]. Proceedings of SPIE, 7695, 76950U(2010).
[7] Collin A, Long B, Archambault P. Merging land-marine realms: spatial patterns of seamless coastal habitats using a multispectral LiDAR[J]. Remote Sensing of Environment, 123, 390-399(2012).
[8] Pe'eri S, Philpot W. Increasing the existence of very shallow-water LIDAR measurements using the red-channel waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 45, 1217-1223(2007).
[9] Zhao X L, Wang X Y, Zhao J H et al. Water-land classification using three-dimensional point cloud data of airborne LiDAR bathymetry based on elevation threshold intervals[J]. Journal of Applied Remote Sensing, 13, 034511(2019).
[10] Huang T C, Tao B Y, Mao Z H et al. Classification of sea and land waveform based on multi-channel ocean lidar[J]. Chinese Journal of Lasers, 44, 0610002(2017).
[11] Qiu Z G, Cao B C. Water-land classification method for airborne LiDAR bathymetric data[C], 328-338(2017).
[12] Hu S J, He Y, Tao B Y et al. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry[J]. Infrared and Laser Engineering, 48, 1113004(2019).
[13] Pe'eri S, Morgan L V, Philpot W D et al. Land-water interface resolved from airborne LIDAR bathymetry (ALB) waveforms[J]. Journal of Coastal Research, 62, 75-85(2011).
[14] Zhao X L, Wang X Y, Zhao J H et al. An improved water-land discriminator using laser waveform amplitudes and point cloud elevations of airborne LIDAR[J]. Journal of Coastal Research, 37, 1158-1172(2021).
[15] Liang G, Zhao X L, Zhao J H et al. MVCNN: a deep learning-based ocean-land waveform classification network for single-wavelength LiDAR bathymetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 656-674(2023).
[16] Fuchs E, Mathur A. Utilizing circular scanning in the CZMIL system[J]. Proceedings of SPIE, 7695, 76950W(2010).
[17] Carr D, Tuell G. Estimating field-of-view loss in bathymetric lidar: application to large-scale simulations[J]. Applied Optics, 53, 4716-4721(2014).
[18] Gu J X, Wang Z, Kuen J et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 77, 354-377(2018).
[19] Banerjee K, Vishak C, Gupta R et al. Exploring alternatives to softmax function[C], 81-86(2021).
[20] Pierce J W, Fuchs E, Nelson S et al. Development of a novel laser system for the CZMIL lidar[J]. Proceedings of SPIE, 7695, 76950V(2010).
[21] Zhao X L, Liang G, Liang Y et al. Background noise reduction for airborne bathymetric full waveforms by creating trend models using Optech CZMIL in the Yellow Sea of China[J]. Applied Optics, 59, 11019-11026(2020).
[22] Wang D D, Xing S, Xu Q et al. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry[J]. Acta Geodaetica et Cartographica Sinica, 51, 750-761(2022).