• Optoelectronics Letters
  • Vol. 18, Issue 11, 647 (2022)
*, , , and
Author Affiliations
  • Accelink Technologies Co., Ltd., Wuhan 430000, China
  • show less
    DOI: 10.1007/s11801-022-2036-3 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Ultra-low dark count InGaAs/InP single photon avalanche diode[J]. Optoelectronics Letters, 2022, 18(11): 647 Copy Citation Text show less
    References

    [1] ZHANG J, ITZLER M A, ZBINDEN S, et al. Advances in InGaAs/InP single photon detector systems for quantum communication[J]. Light:science & applications, 2015, 4:e286.

    [2] MA Z Q, WU Z, XU Y. Compact SPAD pixels with fast and accurate photon counting in the analog domain[J]. Journal of semiconductors, 2021, 42(5):052402.

    [3] YU C, SHANGGUAN M, XIA H, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications[J]. Optics express, 2017, 25(13):14611-14620.

    [4] WANG Y R, WANG L L, WU C Y, et al. Ultra-low detection delay drift caused by the temperature variation in a Si-avalanche-photodiode-based single-photon detector[J]. Chinese optics letters, 2021, 19(8):082502.

    [5] LEE M H, HA C, JEONG H S. Wavelength-division-multiplexed InGaAs-InP avalanched photodiodes for quantum key distribution[J]. Optics communications, 2016, 361:162-167.

    [6] FANYUAN G J, TENG J, WANG S, et al. Optimizing single-photon avalanche photodiodes for dynamic quantum key distribution networks[J]. Physical review applied, 2020, 13(5):054027.

    [7] SANZARO M, CALANDRI S, RUGGERI A. In-GaAs-InP SPAD with monolithically integrated zinc-diffused resistor[J]. IEEE journal of quantum electronics, 2016, 52(7):4500207.

    [8] JIANG X, ITZLER M, DONNELL K. InP-based single-photon detectors and Geiger-mode APD arrays for quantum communications applications[J]. IEEE journal of selected topics in quantum electronics, 2015, 21(3):3800112.

    [9] SIGNORELLI F, TELESCA F, CONCA E, et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications[J]. IEEE journal of selected topics in quantum electronics, 2022, 28(2):38013101.

    [10] PAUL S, ROY J B, BASU P K. Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs[J]. Journal of applied physics, 1991, 69(2): 827.

    [11] MCINTOSH K A, DONNELLY J P, OAKLEY D C. InGaAs/InP avalanche diodes for photon counting at 1.06μm[J]. Applied physics letters, 2002, 81(14):2505.

    [12] LI B, CHEN W, HUANG X F, et al. InP cap layer doping density in InGaAs/InP single-photon avalanche diode[J]. Journal of infrared and millimeter waves, 2017, 36(4):421-424.

    [13] BAEK S H, YANG S C, PARK C Y, et al. Room temperature quantum key distribution characteristics of low-noise InGaAs/InP single-photon avalanche diode[J]. Journal of the Korean Physical Society, 2021, 78:634-641.

    [14] LIANG Y, FEI Q, LIU Z, et al. Low-noise InGaAs/InP single-photon detector with widely tunable repetition rates[J]. Photonics research, 2019, 7:3.

    [15] WANG S, HAN Q, YE H, et al. Temperature dependency of InGaAs/InP single photon avalanche diode for 1550 nm photons[J]. Infrared and laser engineering, 2021, 50:11.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Ultra-low dark count InGaAs/InP single photon avalanche diode[J]. Optoelectronics Letters, 2022, 18(11): 647
    Download Citation