• Photonics Insights
  • Vol. 4, Issue 1, R01 (2025)
Han Wang1,2,†, Wenshu Wang1,2, Xinzhu Xu1,2, Meiqi Li2,3,*, and Peng Xi1,2,*
Author Affiliations
  • 1College of Future Technology, Peking University, Beijing, China
  • 2National Biomedical Imaging Center, Peking University, Beijing, China
  • 3School of Life Sciences, Peking University, Beijing, China
  • show less
    DOI: 10.3788/PI.2025.R01 Cite this Article Set citation alerts
    Han Wang, Wenshu Wang, Xinzhu Xu, Meiqi Li, Peng Xi, "High-spatiotemporal-resolution structured illumination microscopy: principles, instrumentation, and applications," Photon. Insights 4, R01 (2025) Copy Citation Text show less
    References

    [1] J. W. Lichtman, J.-A. Conchello. Fluorescence microscopy. Nat. Methods, 2, 910(2005). https://doi.org/10.1038/nmeth817

    [2] B. Huang, M. Bates, X. Zhuang. Super-resolution fluorescence microscopy. Ann. Rev. Biochem., 78, 993(2009). https://doi.org/10.1146/annurev.biochem.77.061906.092014

    [3] M. J. Sanderson et al. Fluorescence microscopy. Cold Spring Harb. Protoc., 2014, pdb.(2014). https://doi.org/10.1101/pdb.top071795

    [4] E. H. Stelzer. Beyond the diffraction limit?. Nature, 417, 806(2002). https://doi.org/10.1038/417806a

    [5] E. Abbe. Contributions to the theory of the microscope and the nature of microscopic vision. Selected Papers on Resolution Enhancement Techniques in Optical Lithography, Ed. F.M. Schellenberg, SPIE Milestone Series, 178, 12(2004).

    [6] . The Nobel Prize in Chemistry 2014(2025). https://www.nobelprize.org/prizes/chemistry/2014/summary/

    [7] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780(1994). https://doi.org/10.1364/OL.19.000780

    [8] S. W. Hell. Toward fluorescence nanoscopy. Nat. Biotechnol., 21, 1347(2003). https://doi.org/10.1038/nbt895

    [9] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642(2006). https://doi.org/10.1126/science.1127344

    [10] S. J. Sahl, S. W. Hell, S. Jakobs. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol., 18, 685(2017). https://doi.org/10.1038/nrm.2017.71

    [11] B. O. Leung, K. C. Chou. Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc., 65, 967(2011). https://doi.org/10.1366/11-06398

    [12] Y. M. Sigal, R. Zhou, X. Zhuang. Visualizing and discovering cellular structures with super-resolution microscopy. Science, 361, 880(2018). https://doi.org/10.1126/science.aau1044

    [13] R. Heintzmann, T. Huser. Super-resolution structured illumination microscopy. Chem. Rev., 117, 13890(2017). https://doi.org/10.1021/acs.chemrev.7b00218

    [14] L. Schermelleh et al. Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72(2019). https://doi.org/10.1038/s41556-018-0251-8

    [15] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82(2000). https://doi.org/10.1046/j.1365-2818.2000.00710.x

    [16] D. Dan et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep., 3, 1116(2013). https://doi.org/10.1038/srep01116

    [17] M. G. Gustafsson et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957(2008). https://doi.org/10.1529/biophysj.107.120345

    [18] Y. Wu, H. Faster. Shroff. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods, 15, 1011(2018). https://doi.org/10.1038/s41592-018-0211-z

    [19] E. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikr. Anat., 9, 413(1873). https://doi.org/10.1007/BF02956173

    [20] X. Chen et al. Superresolution structured illumination microscopy reconstruction algorithms: a review. Light Sci. Appl., 12, 172(2023). https://doi.org/10.1038/s41377-023-01204-4

    [21] Y. Hou et al. Multi-resolution analysis enables fidelity-ensured deconvolution for fluorescence microscopy. eLight, 4, 14(2024). https://doi.org/10.1186/s43593-024-00073-7

    [22] J. Roth, J. Mehl, A. Rohrbach. Fast TIRF-SIM imaging of dynamic, low-fluorescent biological samples. Biomed. Opt. Express, 11, 4008(2020). https://doi.org/10.1364/BOE.391561

    [23] T. Wöllert, G. M. Langford. Super-resolution imaging of the actin cytoskeleton in living cells using TIRF-SIM. Cytoskeleton: Methods and Protocols, 3(2022).

    [24] H. Ortkrass et al. High-speed TIRF and 2D super-resolution structured illumination microscopy with a large field of view based on fiber optic components. Opt. Express, 31, 29156(2023). https://doi.org/10.1364/OE.495353

    [25] M. G. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U S A, 102, 13081(2005). https://doi.org/10.1073/pnas.0406877102

    [26] E. H. Rego et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. U S A, 109, E135(2012). https://doi.org/10.1073/pnas.1107547108

    [27] E. Mudry et al. Structured illumination microscopy using unknown speckle patterns. Nat. Photonics, 6, 312(2012). https://doi.org/10.1038/nphoton.2012.83

    [28] L.-H. Yeh et al. Speckle-structured illumination for 3D phase and fluorescence computational microscopy. Biomed. Opt. Express, 10, 3635(2019). https://doi.org/10.1364/BOE.10.003635

    [29] J. Demmerle et al. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc., 12, 988(2017). https://doi.org/10.1038/nprot.2017.019

    [30] A. D. Elliott. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom., 92, e68(2020). https://doi.org/10.1002/cpcy.68

    [31] J. Huff. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods, 12, i(2015). https://doi.org/10.1038/nmeth.f.388

    [32] C. R. Sheppard. Super-resolution in confocal imaging. Optik, 80, 53(1988).

    [33] C. B. Müller, J. Enderlein. Image scanning microscopy. Phys. Rev. Lett., 104, 198101(2010). https://doi.org/10.1103/PhysRevLett.104.198101

    [34] I. Gregor, J. Enderlein. Image scanning microscopy. Curr. Opin. Chem. Biol., 51, 74(2019). https://doi.org/10.1016/j.cbpa.2019.05.011

    [35] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top Quantum Electron., 22, 50(2016). https://doi.org/10.1109/JSTQE.2016.2521542

    [36] J. D. Manton et al. Concepts for structured illumination microscopy with extended axial resolution through mirrored illumination. Biomed. Opt. Express, 11, 2098(2020). https://doi.org/10.1364/BOE.382398

    [37] X. Li et al. Three-dimensional structured illumination microscopy with enhanced axial resolution. Nat. Biotechnol., 41, 1307(2023). https://doi.org/10.1038/s41587-022-01651-1

    [38] L. Shao et al. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J., 94, 4971(2008). https://doi.org/10.1529/biophysj.107.120352

    [39] P. O. Bayguinov et al. Modern laser scanning confocal microscopy. Curr. Protoc. Cytom., 85, e39(2018). https://doi.org/10.1002/cpcy.39

    [40] M. Minsky. Memoir on inventing the confocal scanning microscope. Scanning, 10, 128(1988). https://doi.org/10.1002/sca.4950100403

    [41] X. Wu, J. A. Hammer. Confocal Microscopy: Methods and Protocols, 111(2021).

    [42] K. Korobchevskaya et al. Exploring the potential of Airyscan microscopy for live cell imaging. Photonics, 4, 41(2017). https://doi.org/10.3390/photonics4030041

    [43] S. Delattre. Igniting New Confocal Imaging Potential–Nikon AX R Series with NSPARC. Microscopy Today, 31, 23(2023). https://doi.org/10.1093/mictod/qaad088

    [44] C. Roider et al. Deconvolution approach for 3D scanning microscopy with helical phase engineering. Opt. Express, 24, 15456(2016). https://doi.org/10.1364/OE.24.015456

    [45] C. Roider, R. Piestun, A. Jesacher. 3D image scanning microscopy with engineered excitation and detection. Optica, 4, 1373(2017). https://doi.org/10.1364/OPTICA.4.001373

    [46] A. Jesacher, M. Ritsch-Marte, R. Piestun. Three-dimensional information from two-dimensional scans: a scanning microscope with postacquisition refocusing capability. Optica, 2, 210(2015). https://doi.org/10.1364/OPTICA.2.000210

    [47] S. Li et al. Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection. Opt. Express, 26, 23585(2018). https://doi.org/10.1364/OE.26.023585

    [48] N-SIM E Super-Resolution Microscope(2016). https://www.microscope.healthcare.nikon.com/products/super-resolution-microscopes/n-sim-e

    [49] A. G. York et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods, 9, 749(2012). https://doi.org/10.1038/nmeth.2025

    [50] B. R. Boruah. Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator. Am. J. Phys., 77, 331(2009). https://doi.org/10.1119/1.3054349

    [51] C. Maurer et al. What spatial light modulators can do for optical microscopy. Laser Photonics Rev., 5, 81(2011). https://doi.org/10.1002/lpor.200900047

    [52] Y. Yang, A. Forbes, L. Cao. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron. Sci., 2, 230026(2023). https://doi.org/10.29026/oes.2023.230026

    [53] Y. X. Ren, R. D. Lu, L. Gong. Tailoring light with a digital micromirror device. Ann. Phys., 527, 447(2015). https://doi.org/10.1002/andp.201500111

    [54] S. Scholes et al. Structured light with digital micromirror devices: a guide to best practice. Opt. Eng., 59, 041202(2020). https://doi.org/10.1117/1.OE.59.4.041202

    [55] H. Wang et al. 3D gradient printing based on digital light processing. J. Mater. Chem. B, 11, 8883(2023). https://doi.org/10.1039/D3TB00763D

    [56] R. P. Aylward. Advanced galvanometer-based optical scanner design. Sensor Rev., 23, 216(2003). https://doi.org/10.1108/02602280310481968

    [57] J. C. Mullikin et al. Methods for CCD camera characterization. Proc. SPIE, 2173, 73(1994). https://doi.org/10.1117/12.175165

    [58] E. R. Fossum. CMOS image sensors: electronic camera-on-a-chip. IEEE Trans. Electron Dev., 44, 1689(1997). https://doi.org/10.1109/16.628824

    [59] D. Dussault, P. Hoess. Noise performance comparison of ICCD with CCD and EMCCD cameras. Proc. SPIE, 5563, 195(2004). https://doi.org/10.1117/12.561839

    [60] G. Holst. Scientific CMOS camera technology: a breeding ground for new microscopy techniques. Microscopy and Analysis(2014).

    [61] R. Fiolka, M. Beck, A. Stemmer. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator. Opt. Lett., 33, 1629(2008). https://doi.org/10.1364/OL.33.001629

    [62] P. Kner et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339(2009). https://doi.org/10.1038/nmeth.1324

    [63] B.-J. Chang et al. Isotropic image in structured illumination microscopy patterned with a spatial light modulator. Opt. Express, 17, 14710(2009). https://doi.org/10.1364/OE.17.014710

    [64] L. Shao et al. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044(2011). https://doi.org/10.1038/nmeth.1734

    [65] R. Fiolka et al. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. U S A, 109, 5311(2012). https://doi.org/10.1073/pnas.1119262109

    [66] R. Förster et al. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator. Opt. Express, 22, 20663(2014). https://doi.org/10.1364/OE.22.020663

    [67] H.-W. Lu-Walther et al. fastSIM: a practical implementation of fast structured illumination microscopy. Methods Appl. Fluores., 3, 014001(2015). https://doi.org/10.1088/2050-6120/3/1/014001

    [68] L. Song et al. Fast structured illumination microscopy using rolling shutter cameras. Meas. Sci. Technol., 27, 055401(2016). https://doi.org/10.1088/0957-0233/27/5/055401

    [69] X. Huang et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451(2018). https://doi.org/10.1038/nbt.4115

    [70] X. Xu et al. Ultra-high spatio-temporal resolution imaging with parallel acquisition-readout structured illumination microscopy (PAR-SIM). Light Sci. Appl., 13, 125(2024). https://doi.org/10.1038/s41377-024-01464-8

    [71] M. Li et al. Structured illumination microscopy using digital micro-mirror device and coherent light source. Appl. Phys. Lett., 116, 233702(2020). https://doi.org/10.1063/5.0008264

    [72] A. Sandmeyer et al. Cost-effective live cell structured illumination microscopy with video-rate imaging. ACS Photonics, 8, 1639(2021). https://doi.org/10.1021/acsphotonics.0c01937

    [73] P. T. Brown et al. Multicolor structured illumination microscopy and quantitative control of polychromatic light with a digital micromirror device. Biomed. Opt. Express, 12, 3700(2021). https://doi.org/10.1364/BOE.422703

    [74] M. Lachetta et al. Dual color DMD-SIM by temperature-controlled laser wavelength matching. Opt. Express, 29, 39696(2021). https://doi.org/10.1364/OE.437822

    [75] D. Gong et al. Easily scalable multi-color DMD-based structured illumination microscopy. Opt. Lett., 49, 77(2023). https://doi.org/10.1364/OL.507599

    [76] Y. Li et al. High-speed autopolarization synchronization modulation three-dimensional structured illumination microscopy. Adv. Photonics Nexus, 3, 016001(2024). https://doi.org/10.1117/1.APN.3.1.016001

    [77] E. Chung et al. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens. Biophys. J., 93, 1747(2007). https://doi.org/10.1529/biophysj.106.097907

    [78] M. Brunstein et al. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks. Opt. Express, 21, 26162(2013). https://doi.org/10.1364/OE.21.026162

    [79] Y. Chen et al. Widefield and total internal reflection fluorescent structured illumination microscopy with scanning galvo mirrors. J. Biomed. Opt., 23, 046007(2018). https://doi.org/10.1117/1.JBO.23.4.046007

    [80] Y. Yuan et al. Dual-color simultaneous structured illumination microscopy based on galvo-mirrors. Opt. Commun., 511, 128012(2022). https://doi.org/10.1016/j.optcom.2022.128012

    [81] F. Xu et al. Real-time reconstruction using electro-optics modulator-based structured illumination microscopy. Opt. Express, 30, 13238(2022). https://doi.org/10.1364/OE.454982

    [82] S. Roth et al. Optical photon reassignment microscopy (OPRA). Opt. Nanosc., 2, 1(2013). https://doi.org/10.1186/2192-2853-2-5

    [83] G. M. De Luca et al. Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express, 4, 2644(2013). https://doi.org/10.1364/BOE.4.002644

    [84] A. G. York et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods, 10, 1122(2013). https://doi.org/10.1038/nmeth.2687

    [85] J. Huff, A. Bergter, B. Luebbers. Multiplex mode for the LSM 9 series with Airyscan 2: fast and gentle confocal super-resolution in large volumes. Nat. Methods, 10, 1(2019).

    [86] M. Castello et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods, 16, 175(2019). https://doi.org/10.1038/s41592-018-0291-9

    [87] A. Zunino et al. Open-source tools enable accessible and advanced image scanning microscopy data analysis. Nat. Photonics, 17, 457(2023). https://doi.org/10.1038/s41566-023-01216-x

    [88] S. Shen et al. Confocal rescan structured illumination microscopy for real-time deep tissue imaging with superresolution. Adv. Photonics Nexus, 2, 016009(2023). https://doi.org/10.1117/1.APN.2.1.016009

    [89] W. Ren et al. Expanding super-resolution imaging versatility in organisms with multi-confocal image scanning microscopy. Natl. Sci. Rev., 11, nwae303(2024). https://doi.org/10.1093/nsr/nwae303

    [90] O. Schulz et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc. Natl. Acad. Sci. U S A, 110, 21000(2013). https://doi.org/10.1073/pnas.1315858110

    [91] T. Azuma, T. Kei. Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt. Express, 23, 15003(2015). https://doi.org/10.1364/OE.23.015003

    [92] S. Hayashi, Y. Okada. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics. Mol. Biol. Cell, 26, 1743(2015). https://doi.org/10.1091/mbc.E14-08-1287

    [93] S. Qin et al. Doubling the resolution of a confocal spinning-disk microscope using image scanning microscopy. Nat. Protoc., 16, 164(2021). https://doi.org/10.1038/s41596-020-00408-x

    [94] R. F. Laine et al. Structured illumination microscopy combined with machine learning enables the high throughput analysis and classification of virus structure. Elife, 7, e40183(2018). https://doi.org/10.7554/eLife.40183

    [95] Y. Shishido-Hara, S. Ichinose, T. Uchihara. JC virus intranuclear inclusions associated with PML-NBs: analysis by electron microscopy and structured illumination microscopy. Am. J. Pathol., 180, 1095(2012). https://doi.org/10.1016/j.ajpath.2011.11.036

    [96] K. Marno et al. The evolution of structured illumination microscopy in studies of HIV. Methods, 88, 20(2015). https://doi.org/10.1016/j.ymeth.2015.06.007

    [97] R. D. Gray et al. VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Sci. Rep., 6, 29132(2016). https://doi.org/10.1038/srep29132

    [98] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015). https://doi.org/10.1126/science.aab3500

    [99] W. Zhao et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotech., 40, 606(2022). https://doi.org/10.1038/s41587-021-01092-2

    [100] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793(2006). https://doi.org/10.1038/nmeth929

    [101] F. J. Blanco, I. Rego, C. Ruiz-Romero. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol., 7, 161(2011). https://doi.org/10.1038/nrrheum.2010.213

    [102] V. Guarani et al. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. Elife, 4, e06265(2015). https://doi.org/10.7554/eLife.06265

    [103] X. Shao et al. Super-resolution quantification of nanoscale damage to mitochondria in live cells. Nano Res., 13, 2149(2020). https://doi.org/10.1007/s12274-020-2822-9

    [104] S. Jakobs et al. Light microscopy of mitochondria at the nanoscale. Annu. Rev. Biophys., 49, 289(2020). https://doi.org/10.1146/annurev-biophys-121219-081550

    [105] J. Suh et al. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab., 35, 345(2023). https://doi.org/10.1016/j.cmet.2023.01.003

    [106] L. L. Lackner. The expanding and unexpected functions of mitochondria contact sites. Trends Cell Biol., 29, 580(2019). https://doi.org/10.1016/j.tcb.2019.02.009

    [107] Y. Guo et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell, 175, 1430(2018). https://doi.org/10.1016/j.cell.2018.09.057

    [108] C. Qiao et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods, 18, 194(2021). https://doi.org/10.1038/s41592-020-01048-5

    [109] C. Qiao et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotech., 41, 367(2023). https://doi.org/10.1038/s41587-022-01471-3

    [110] E. Lawrence, E. Boucher, C. Mandato. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div., 11, 1(2016). https://doi.org/10.1186/s13008-016-0015-4

    [111] Y. Chen et al. Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy. Nat. Commun., 9, 4818(2018). https://doi.org/10.1038/s41467-018-07244-4

    [112] M. Lu et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci. Adv., 6, eabc7209(2020). https://doi.org/10.1126/sciadv.abc7209

    [113] W. Zou et al. Nanoscopic quantification of sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells derived from patients with mitochondrial diseases. J. Nanobiotechnol., 19, 136(2021). https://doi.org/10.1186/s12951-021-00882-9

    [114] X. Li et al. Long-term super-resolution imaging of mitochondrial dynamics. Chin. Chem. Lett., 31, 2937(2020). https://doi.org/10.1016/j.cclet.2020.05.043

    [115] Y. Qu et al. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol. Biol. Cell, 28, 296(2017). https://doi.org/10.1091/mbc.e16-10-0727

    [116] S. D. Ryan, Z. McCarthy, M. Potomkin. Motor protein transport along inhomogeneous microtubules. Bull. Math. Biol., 83, 9(2021). https://doi.org/10.1007/s11538-020-00838-4

    [117] S. G. Megason, S. E. Fraser. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Develop., 120, 1407(2003). https://doi.org/10.1016/j.mod.2003.07.005

    [118] J. Huisken et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007(2004). https://doi.org/10.1126/science.1100035

    [119] C. Zhang et al. Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy. PhotoniX, 4, 38(2023). https://doi.org/10.1186/s43074-023-00115-2

    [120] J. Huisken, D. Y. Stainier. Selective plane illumination microscopy techniques in developmental biology. Development, 136, 1963(2009). https://doi.org/10.1242/dev.022426

    [121] S. Wischnitzer. Introduction to Electron Microscopy(2013).

    [122] D. Shrestha et al. Understanding FRET as a research tool for cellular studies. Int. J. Mol. Sci., 16, 6718(2015). https://doi.org/10.3390/ijms16046718

    [123] S. Geissbuehler et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun., 5, 5830(2014). https://doi.org/10.1038/ncomms6830

    [124] A. Descloux et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nat. Photonics, 12, 165(2018). https://doi.org/10.1038/s41566-018-0109-4

    [125] Y. J. Hsu et al. Line-scanning hyperspectral imaging based on structured illumination optical sectioning. Biomed. Opt. Express, 8, 3005(2017). https://doi.org/10.1364/BOE.8.003005

    [126] A. Descloux et al. High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism. Nanophotonics, 9, 143(2020). https://doi.org/10.1515/nanoph-2019-0346

    [127] M. L. Senftleben et al. Fast volumetric multifocus structured illumination microscopy of subcellular dynamics in living cells. Biomed. Opt. Express, 15, 2281(2024). https://doi.org/10.1364/BOE.516261

    [128] Q. Zhang et al. Diffractive optical elements 75 years on: from micro-optics to metasurfaces. Photon. Insights, 2, R09(2023). https://doi.org/10.3788/PI.2023.R09

    [129] G. M. Akselrod et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv. Mater., 27, 8028(2015). https://doi.org/10.1002/adma.201503281

    [130] Y. Guo et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface. Adv. Opt. Mater., 7, 1900503(2019). https://doi.org/10.1002/adom.201900503

    [131] M. Zhao et al. Phase characterisation of metalenses. Light Sci. Appl., 10, 52(2021). https://doi.org/10.1038/s41377-021-00492-y

    [132] X. Luo et al. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11, 1(2021). https://doi.org/10.1515/nanoph-2021-0583

    [133] M. K. Chen et al. A meta-device for intelligent depth perception. Adv. Mater., 35, 2107465(2023). https://doi.org/10.1002/adma.202107465

    [134] J. Ding, S. Peng. Polarization-controlled structured illumination for high-resolution imaging. Opt. Express, 33, 4138(2025). https://doi.org/10.1364/OE.543321

    [135] S. Mohammadian et al. Integrated super resolution fluorescence microscopy and transmission electron microscopy. Ultramicrosc., 215, 113007(2020). https://doi.org/10.1016/j.ultramic.2020.113007

    [136] D. Jeong, D. Kim. Recent developments in correlative super-resolution fluorescence microscopy and electron microscopy. Mol. Cells, 45, 41(2022). https://doi.org/10.14348/molcells.2021.5011

    [137] N. De Jonge, F. M. Ross. Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6, 695(2011). https://doi.org/10.1038/nnano.2011.161

    [138] F. M. Ross. Opportunities and challenges in liquid cell electron microscopy. Science, 350, aaa9886(2015). https://doi.org/10.1126/science.aaa9886

    [139] V. Liss et al. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy. Sci. Rep., 5, 17740(2015). https://doi.org/10.1038/srep17740

    [140] M. Dimura et al. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struc. Biol., 40, 163(2016). https://doi.org/10.1016/j.sbi.2016.11.012

    [141] Z. Luo et al. Structured illumination-based super-resolution live-cell quantitative FRET imaging. Photonics Res., 11, 887(2023). https://doi.org/10.1364/PRJ.485521

    [142] E. Perego et al. Single-photon microscopy to study biomolecular condensates. Nat. Commun., 14, 8224(2023). https://doi.org/10.1038/s41467-023-43969-7

    [143] R. Datta et al. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt., 25, 071203(2020). https://doi.org/10.1117/1.JBO.25.7.071203

    [144] B. Torrado et al. Fluorescence lifetime imaging microscopy. Nat. Rev. Methods Primers, 4, 1(2024). https://doi.org/10.1038/s43586-024-00358-8

    [145] Y. Sung et al. Optical diffraction tomography for high resolution live cell imaging. Opt. Express, 17, 266(2009). https://doi.org/10.1364/OE.17.000266

    [146] K. Lee et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Opt. Lett., 42, 999(2017). https://doi.org/10.1364/OL.42.000999

    [147] D. Dong et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci. Appl., 9, 11(2020). https://doi.org/10.1038/s41377-020-0249-4

    [148] J. Oh et al. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. Biomed. Opt. Express, 11, 1257(2020). https://doi.org/10.1364/BOE.377740

    [149] K. Zhanghao et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat. Commun., 10, 4694(2019). https://doi.org/10.1038/s41467-019-12681-w

    [150] X. Chen et al. Enhanced reconstruction of structured illumination microscopy on a polarized specimen. Opt. Express, 28, 25642(2020). https://doi.org/10.1364/OE.395092

    [151] K. Zhanghao et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat. Commun., 11, 5890(2020). https://doi.org/10.1038/s41467-020-19747-0

    [152] E. Betzig. A cell observatory to reveal the subcellular foundations of life. Nat. Methods, 1(2024). https://doi.org/10.1038/s41592-024-02379-3

    Han Wang, Wenshu Wang, Xinzhu Xu, Meiqi Li, Peng Xi, "High-spatiotemporal-resolution structured illumination microscopy: principles, instrumentation, and applications," Photon. Insights 4, R01 (2025)
    Download Citation