[1] MOHN P. A century of zero expansion[J]. Nature, 1999, 400(6739):18-19.
[2] MARY T A, EVANS J S O, VOGT T, et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8[J]. Science, 1996,272(5258): 90-92.
[3] LI S, HUANG R, ZHAO Y, et al. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe, Si)13 compounds[J]. Adv Funct Mater, 2017, 27(5): 1604195.
[4] MARGADONNA S, PRASSIDES K, FITCH A N. Zero thermal expansion in a Prussian blue analogue[J]. J Am Chem Soc, 2004,126(47): 15390-15391.
[5] ZHENG X G, KUBOZONO H, YAMADA H, et al. Giant negative thermal expansion in magnetic nanocrystals[J]. Nat Nanotech, 2008,3(12): 724-726.
[6] HU L, CHEN J, FAN L, et al. Zero Thermal expansion and ferromagnetism in cubic Sc1-xMxF3 (M=Ga, Fe) over a wide temperature range[J]. J Am Chem Soc, 2014, 136(39): 13566-13569.
[7] CHEN J, FAN L, REN Y, et al. Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite[J]. Phys Rev Lett, 2013, 110(11): 115901.
[8] SONG Y, SHI N, DENG S, et al. Negative thermal expansion in magnetic materials[J]. Prog Mater Sci, 2021, 121: 100835.
[10] BERTAUT E F, FRUCHART D, BOUCHAUD J P, et al. Diffraction neutronique de Mn3GaN[J]. Solid State Commun, 1968, 6(5): 251-256.
[11] FRUCHART D, F. BERTAUT E. Magnetic studies of the metallic perovskite-type compounds of manganese[J]. J Phys Soc Jpn, 1978,44(3): 781-791.
[12] SHI K, SUN Y, YAN J, et al. Baromagnetic effect in antiperovskite Mn3Ga0.95N0.94 by neutron powder diffraction analysis[J]. Adv Mater,2016, 28(19): 3761-3767.
[13] MATSUNAMI D, FUJITA A, TAKENAKA K, et al. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN[J]. Nat Mater, 2015, 14(1): 73-78.
[14] ZHAO K, HAJIRI T, CHEN H, et al. Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1-xCuxN[J]. Phys Rev B, 2019, 100(4): 045109.
[15] YUAN X, SUN Y, GUO H, et al. Design of negative/nearly zero thermal expansion behavior over a wide temperature range by multi-phase composite[J]. Mater Design, 2021, 203: 109591.
[16] TAKENAKA K, TAKAGI H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Appl Phys Lett, 2005,87(26): 261902.
[17] NAKAMURA Y, TAKENAKA K, KISHIMOTO A, et al. Mechanical properties of metallic perovskite Mn3Cu0.5Ge0.5N: High-stiffness isotropic negative thermal expansion material[J]. J Am Ceram Soc,2009, 92(12): 2999-3003.
[18] TAKENAKA K, ASANO K, MISAWA M, et al. Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect[J]. Appl Phys Lett, 2008, 92(1): 011927.
[19] HUANG R, LI L, CAI F, et al. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si[J]. Applied Physics Letters, 2008, 93(8): 081902.
[20] TAKENAKA K, TAKAGI H. Zero thermal expansion in a pure-form antiperovskite manganese nitride[J]. Appl Phys Lett, 2009, 94(13):131904.
[21] IIKUBO S, KODAMA K, TAKENAKA K, et al. Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure: Neutron powder diffraction measurements[J]. Phys Rev B, 2008, 77(2): 020409.
[22] IIKUBO S, KODAMA K, TAKENAKA K, et al. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN[J]. Phys Rev Lett, 2008, 101(20): 205901.
[23] SUN Y, WANG C, WEN Y, et al. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGex N[J]. Appl Phys Lett,2007, 91(23): 231913.
[24] SUN Y, WANG C, WEN Y, et al. Negative thermal expansion and correlated magnetic and electrical properties of Si-doped Mn3GaN compounds[J]. J Am Ceram Soc, 2010, 93(3): 650-653.
[25] LU H, SUN Y, SHI K, et al. Negative thermal expansion, magnetic and electronic transport properties in antiperovskite compounds Mn3Ga1-xAgxN (0≤x≤1.0)[J]. J Magn Magn Mater, 2020, 514:167137.
[26] SUN Y, WANG C, WEN Y, et al. Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1-xSnxN compounds[J]. J Am Ceram Soc, 2010, 93(8): 2178-2181.
[27] DING L, WANG C, SUN Y, et al. Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn3Ni1-xCuxN compounds[J]. J Appl Phys, 2015, 117(21): 213915.
[28] SHI K, SUN Y, COLIN C V, et al. Investigation of the spin-lattice coupling in Mn3Ga1-xSnxN antiperovskites[J]. Phys Rev B, 2018, 97(5):054110.
[29] LU H, SUN Y, DENG S, et al. Tunable negative thermal expansion and structural evolution in antiperovskite Mn3Ga1-xGexN (0≤x≤1.0)[J]. J Am Ceram Soc, 2017, 100(12): 5739-5745.
[30] WANG C, CHU L, YAO Q, et al. Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)xN (M= Ag,Ge)[J]. Phys Rev B, 2012, 85(22): 220103.
[31] DENG S, SUN Y, WU H, et al. Invar-like behavior of antiperovskite Mn3+xNi1-xN compounds[J]. Chem Mater, 2015, 27(7): 2495-2501.
[32] DENG S, SUN Y, WU H, et al. Phase separation and zero thermal expansion in antiperovskite Mn3Zn0.77Mn0.19N0.94: An in situ neutron diffraction investigation[J]. Scrip Mater, 2018, 146: 18-21.
[33] LU H, SUN Y, SHI K, et al. Effects of Ni substitution on magnetism and thermal expansion of antiperovskite Mn3Ga1-xNixN (0≤x≤1.0)[J].Ceram Int, 2018, 44(8): 9574-9580.
[34] SUN Y, YUAN X, TIAN X, et al. Controllable nearly zero thermal expansion behavior in Mn3Zn1-xCrxN (0≤x≤0.20) compounds[J].Scrip Mater, 2019, 162: 108-111.
[35] SONG X, SUN Z, HUANG Q, et al. Adjustable zero thermal expansion in antiperovskite manganese nitride[J]. Adv Mater, 2011,23(40): 4690-4694.
[36] LIN J C, TONG P, ZHOU X J, et al. Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3[J]. Appl Phys Lett, 2015, 107(13): 131902.
[37] TAN J, HUANG R, WANG W, et al. Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites[J]. Nano Res, 2015, 8(7): 2302-2307.
[38] QU B Y, PAN B C. Nature of the negative thermal expansion in antiperovskite compound Mn3ZnN[J]. J Appl Phys, 2010, 108(11):113920.
[39] QU B Y, HE H Y, PAN B C. Origin of the giant negative thermal expansion in Mn3(Cu0.5Ge0.5)N[J]. Adv Conden Matter Phys, 2012,2012: 1-7.
[40] QU B, HE H, PAN B. A first-principles study on the negative thermal expansion material: Mn3(A0.5B0.5)N (A= Cu, Zn, Ag, or Cd; B= Si, Ge,or Sn)[J]. AIP Adv, 2016, 6(7): 075122.
[41] DENG S, SUN Y, WANG L, et al. Frustrated triangular magnetic structures of Mn3ZnN: Applications in thermal expansion[J]. J Phy Chem C, 2015, 119(44): 24983-24990.
[42] MOCHIZUKI M, KOBAYASHI M, OKABE R, et al. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets[J]. Phys Rev B, 2018, 97(6): 060401.
[43] KOBAYASHI M, MOCHIZUKI M. Theory of magnetism-driven negative thermal expansion in inverse perovskite antiferromagnets[J]. Phys Rev Mater, 2019, 3(2): 024407.
[44] DING L, WANG C, NA Y, et al. Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5N (A=Ni, Sn)/Cu composites[J]. Script Mater, 2011, 65(8): 687-690.
[45] YAN J, SUN Y, WANG C, et al. Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature[J]. Scrip Mater, 2014, 84: 19-22.
[46] TAKENAKA K, HAMADA T, KASUGAI D, et al. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion[J]. J Appl Phys, 2012, 112(8): 083517.
[47] LIN J, TONG P, ZHANG K, et al. The GaNMn3-epoxy composites with tunable coefficient of thermal expansion and good dielectric performance[J]. Compos Sci Tech, 2017, 146: 177-182.
[48] MIAO J, LIU J, WU X, et al. Thermal expansion, electrical conductivity and hardness of Mn3Zn0.5Sn0.5N/Al composites[J]. Sci Eng Compos Mater, 2018, 25(1): 95-100.
[49] ZHOU C, ZHANG Q, TAN X, et al. Fully-dense Mn3Zn0.7Ge0.3N/Al composites with zero thermal expansion behavior around room temperature[J]. Materialia, 2019, 6: 100289.
[50] KINO H, FUKUSHIMA T, TANAKA T. Remarkable suppression of local stress in 3D IC by manganese nitride-based filler with large negative CTE[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017: 1523-1528.