• Optical Instruments
  • Vol. 46, Issue 2, 28 (2024)
Qi CHEN1, Xujun YUAN2, Rongfu ZHANG1,*, and Yang ZHENG1
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering , University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Cohere Electronic Technology Co., Ltd., Shanghai 200612, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202302070014 Cite this Article
    Qi CHEN, Xujun YUAN, Rongfu ZHANG, Yang ZHENG. Smith predictive fuzzy PID control algorithm and its application in powder quantitative weighing[J]. Optical Instruments, 2024, 46(2): 28 Copy Citation Text show less
    High-precision powder shaking device
    Fig. 1. High-precision powder shaking device
    Control block diagram of Smith predictive compensation system
    Fig. 2. Control block diagram of Smith predictive compensation system
    Smith predictive fuzzy PID controller
    Fig. 3. Smith predictive fuzzy PID controller
    MATLAB simulation model
    Fig. 4. MATLAB simulation model
    Simulation results for given input
    Fig. 5. Simulation results for given input
    Simulation results with added disturbance
    Fig. 6. Simulation results with added disturbance
    Block diagram of the fuzzy PID parameter setting program
    Fig. 7. Block diagram of the fuzzy PID parameter setting program
    Data with conventional PID quantitative weighing
    Fig. 8. Data with conventional PID quantitative weighing
    Data using Smith fuzzy PID quantitative weighing
    Fig. 9. Data using Smith fuzzy PID quantitative weighing
    行程/cm质量/g行程/cm质量/g行程/cm质量/g
    1.20.00111.60.013820.0238
    1.20.00221.60.015620.0209
    1.20.00191.60.015120.0146
    1.20.00121.60.013820.0286
    1.20.00091.60.011220.0268
    1.20.00121.60.016920.0301
    1.20.00191.60.016520.0110
    1.20.00111.60.016720.0287
    1.20.00131.60.018120.0133
    1.20.00021.60.017720.0174
    Table 1. Powder weight at different travel distances after shaking
    最大速度/(r/min)单次运动抖出粉末质量/g平均值/g
    400.02400.02000.02210.01650.01730.01690.01810.01890.02060.02000.0194
    500.01820.02350.01980.01470.02060.01690.01990.02150.01660.01720.0189
    600.01820.02350.02180.02070.02060.01690.01990.02150.02360.02120.0208
    Table 2. Powder weight at different maximum speeds after shaking
    eec
    NBNMNSZOPSPMPB
    NBPB/NB/PSPB/NB/NSPM/NM/NBPM/NM/NBPS/NS/NBZO/ZO/NMZO/ZO/PS
    NMPB/NB/PSPB/NB/NSPM/NM/NBPS/NS/NMPS/NS/NMZO/ZO/NSNS/ZO/ZO
    NSPM/NB/ZOPM/NM/NSPM/NS/NMPS/NS/NMZO/ZO/NSNS/PS/NSNS/PS/ZO
    ZOPM/NM/ZOPM/NM/NSPS/NS/NSZO/ZO/NSNS/PS/NSNM/PS/NSNM/PM/ZO
    PSPS/NM/ZOPS/NS/ZOZO/ZO/ZONS/PS/ZONS/PS/ZONM/PM/ZONM/PB/ZO
    PMPS/ZO/PBZO/ZO/NSNS/PS/PSNM/PS/PSNM/PM/PSNM/PB/PSNB/PB/PB
    PBZO/ZO/PBZO/ZO/PMNM/PS/PMNM/PM/PMNM/PM/PSNB/PB/PSNB/PB/PB
    Table 3. Fuzzy control table
    最大值/g最小值/g平均值/g中间值/g标准差
    1.01150.99101.00121.00080.0042
    Table 4. Statistics of the conventional PID quantitative weighing
    最大值/g最小值/g平均值/g中间值/g标准差
    1.00590.99731.00131.00130.0020
    Table 5. Statistics using Smith fuzzy PID quantitative weighing
    Qi CHEN, Xujun YUAN, Rongfu ZHANG, Yang ZHENG. Smith predictive fuzzy PID control algorithm and its application in powder quantitative weighing[J]. Optical Instruments, 2024, 46(2): 28
    Download Citation