[1] Miao L F. A 3-D object reconstruction method based on multi-view stereo[J]. Journal of Zhejiang Normal University (Natural Sciences), 36, 241-246(2013).
[2] Zhang Y W, Hu K, Wang P S. Review of 3D reconstruction algorithms[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 12, 591-602(2020).
[3] Luo Y W, Zheng L, Guan T et al. Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation[C], 2502-2511(2019).
[4] Luo Y W, Liu P, Guan T et al. Significance-aware information bottleneck for domain adaptive semantic segmentation[C], 6777-6786(2019).
[5] Chang J R, Chen Y S. Pyramid stereo matching network[C], 5410-5418(2018).
[6] Liao J. Accurate 3D reconstruction for complex scenes based on multi-view images[D](2021).
[7] Yao Y, Luo Z X, Li S W et al. MVSNet: depth inference for unstructured multi-view stereo[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11212, 785-801(2018).
[8] Yao Y, Luo Z X, Li S W et al. Recurrent MVSNet for high-resolution multi-view stereo depth inference[C], 5520-5529(2019).
[9] Yang J Y, Mao W, Liu M M et al. Cost volume pyramid based depth inference for multi-view stereo[C], 4876-4885(2020).
[10] Wang F J H, Galliani S, Vogel C et al. PatchmatchNet: learned multi-view patchmatch stereo[C], 14189-14198(2021).
[11] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[13] Barnes C, Shechtman E, Finkelstein A et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphic, 28, 24(2009).
[14] Dai J F, Qi H Z, Xiong Y W et al. Deformable convolutional networks[C], 764-773(2017).
[15] Aanæs H, Jensen R R, Vogiatzis G et al. Large-scale data for multiple-view stereopsis[J]. International Journal of Computer Vision, 120, 153-168(2016).
[17] Campbell N D F, Vogiatzis G, Hernández C et al. Using multiple hypotheses to improve depth-maps for multi-view stereo[M]. Forsyth D, Torr P, Zisserman Z. Computer vision-ECCV 2008. Lecture notes in computer science, 5302, 766-779(2008).
[18] Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1362-1376(2010).
[19] Tola E, Strecha C, Fua P. Efficient large-scale multi-view stereo for ultra high-resolution image sets[J]. Machine Vision and Applications, 23, 903-920(2012).
[20] Galliani S, Lasinger K, Schindler K. Massively parallel multiview stereopsis by surface normal diffusion[C], 873-881(2015).
[21] Luo K Y, Guan T, Ju L L et al. P-MVSNet: learning patch-wise matching confidence aggregation for multi-view stereo[C], 10451-10460(2019).
[22] Chen R, Han S F, Xu J et al. Point-based multi-view stereo network[C], 1538-1547(2019).
[23] Yu Z H, Gao S H. Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and Gauss-Newton refinement[C], 1946-1955(2020).
[24] Gu X D, Fan Z W, Zhu S Y et al. Cascade cost volume for high-resolution multi-view stereo and stereo matching[C], 2492-2501(2020).
[25] Huang B C, Yi H W, Huang C et al. M3VSNET: unsupervised multi-metric multi-view stereo network[C], 3163-3167(2021).
[26] Knapitsch A, Park J, Zhou Q Y et al. Tanks and temples: benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 36, 78(2017).