• Photonics Research
  • Vol. 12, Issue 8, 1604 (2024)
Heng Li1,†, Xixi Chen1,†, Tianli Wu1, Zhiyong Gong1,2..., Jinghui Guo2, Xiaosong Bai3, Jiawei Li3, Yao Zhang1, Yuchao Li1,* and Baojun Li1|Show fewer author(s)
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
  • 2School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
  • 3InnerMedical Co., Ltd., Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.523587 Cite this Article Set citation alerts
    Heng Li, Xixi Chen, Tianli Wu, Zhiyong Gong, Jinghui Guo, Xiaosong Bai, Jiawei Li, Yao Zhang, Yuchao Li, Baojun Li, "Stimulation and imaging of neural cells via photonic nanojets," Photonics Res. 12, 1604 (2024) Copy Citation Text show less
    References

    [1] L. Zheng, M. Yu, R. Lin. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat. Commun., 11, 3012(2020).

    [2] A. J. Taal, I. Uguz, S. Hillebrandt. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron., 6, 669-679(2023).

    [3] C. Richter, A. Matic, J. D. Wells. Neural stimulation with optical radiation. Laser Photonics Rev., 5, 68-80(2011).

    [4] Y. Zhang, D. Yang, J. Nie. Transcranial nongenetic neuromodulation via bioinspired vesicle-enabled precise NIR-II optical stimulation. Adv. Mater., 35, 2208601(2023).

    [5] X. Wu, Y. Jiang, N. J. Rommelfanger. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat. Biomed. Eng., 6, 754-770(2022).

    [6] A. G. Xu, M. Qian, F. Tian. Focal infrared neural stimulation with high-field functional MRI: a rapid way to map mesoscale brain connectomes. Sci. Adv., 5, eaau7046(2019).

    [7] M. G. Shapiro, K. Homma, S. Villarreal. Infrared light excites cells by changing their electrical capacitance. Nat. Commun., 3, 736(2012).

    [8] G. Chen, Y. Cao, Y. Tang. Advanced near-infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Adv. Sci., 7, 1903783(2020).

    [9] J. Guo, Y. Wu, Z. Gong. Photonic nanojet-mediated optogenetics. Adv. Sci., 9, 2104140(2022).

    [10] R. Yuste. Fluorescence microscopy today. Nat. Methods, 2, 902-904(2005).

    [11] Y. M. Sigal, R. Zhou, X. Zhuang. Visualizing and discovering cellular structures with super-resolution microscopy. Science, 361, 880-887(2018).

    [12] C. L. G. J. Scheele, D. Herrmann, E. Yamashita. Multiphoton intravital microscopy of rodents. Nat. Rev. Methods Primers, 2, 89(2022).

    [13] Z. Wang, W. Guo, L. Li. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).

    [14] L. Chen, Y. Zhou, R. Zhou. Microsphere-toward future of optical microscopes. iScience, 23, 101211(2020).

    [15] A. Darafsheh, C. Guardiola, A. Palovcak. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett., 40, 5-8(2015).

    [16] T. Zhang, P. Li, H. Yu. Fabrication of flexible microlens arrays for parallel super-resolution imaging. Appl. Surf. Sci., 504, 144375(2020).

    [17] Y. Xie, D. Cai, J. Pan. Chalcogenide microsphere-assisted optical super-resolution imaging. Adv. Opt. Mater., 10, 2102269(2022).

    [18] X. Chen, T. Wu, Z. Gong. Lipid droplets as endogenous intracellular microlenses. Light Sci. Appl., 10, 242(2021).

    [19] C. Xing, Y. Yan, C. Feng. Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces, 9, 32896-32906(2017).

    [20] S. Tiwari, C. Taneja, V. Sharma. Dielectric microsphere coupled to a plasmonic nanowire: a self-assembled hybrid optical antenna. Adv. Opt. Mater., 8, 1901672(2020).

    [21] L. Yang, L. Li, Q. Wang. Over 1000-fold enhancement of the unidirectional photoluminescence from a microsphere-cavity-array-capped QD/PDMS composite film for flexible lighting and displays. Adv. Opt. Mater., 7, 1901228(2019).

    [22] J. Sun, S. Tang, J. Meng. Whispering-gallery optical microprobe for photoacoustic imaging. Photonics Res., 11, A65-A71(2023).

    [23] A. Chiasera, Y. Dumeige, P. Feron. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev., 4, 457-482(2010).

    [24] S. H. Huang, X. Jiang, B. Peng. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance. Photonics Res., 6, 346-356(2018).

    [25] X. Chen, T. Wu, Z. Gong. Subwavelength imaging and detection using adjustable and movable droplet microlenses. Photonics Res., 8, 225-234(2020).

    [26] Y. Li, H. Xin, H. Lei. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci. Appl., 5, e16176(2016).

    [27] M. Guo, Y. Ye, J. Hou. Experimental far-field imaging properties of high refractive index microsphere lens. Photonics Res., 3, 339-342(2015).

    [28] Y. Li, X. Liu, B. Li. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light Sci. Appl., 8, 61(2019).

    [29] F. Wang, L. Liu, H. Yu. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat. Commun., 7, 13748(2016).

    [30] L. Li, W. Guo, Y. Yan. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl., 2, e104(2013).

    [31] T. Zhang, H. Yu, P. Li. Microsphere-based super-resolution imaging for visualized nanomanipulation. ACS Appl. Mater. Interfaces, 12, 48093-48100(2020).

    [32] H. Yang, N. Moullan, J. Auwerx. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10, 1712-1718(2014).

    [33] J. Stetefeld, S. A. McKenna, T. R. Patel. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev., 8, 409-427(2016).

    [34] H. Yang, R. Trouillon, G. Huszka. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett., 16, 4862-4870(2016).

    [35] A. Darafsheh, V. Abbasian. Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture. Light Sci. Appl., 12, 22(2023).

    [36] D. Gérard, J. Wenger, A. Devilez. Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Opt. Express, 16, 15297-15303(2008).

    [37] L. Liang, D. B. L. Teh, ND. Dinh. Upconversion amplification through dielectric superlensing modulation. Nat. Commun., 10, 1391(2019).

    [38] F. Scala, D. Kobak, M. Bernabucci. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature, 598, 144-150(2021).

    [39] X. Wu, F. Yang, S. Cai. Nanotransducer-enabled deep-brain neuromodulation with NIR-II light. ACS Nano, 17, 7941-7952(2023).

    [40] Z. Nie, A. Petukhova, E. Kumacheva. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol., 5, 15-25(2010).

    Heng Li, Xixi Chen, Tianli Wu, Zhiyong Gong, Jinghui Guo, Xiaosong Bai, Jiawei Li, Yao Zhang, Yuchao Li, Baojun Li, "Stimulation and imaging of neural cells via photonic nanojets," Photonics Res. 12, 1604 (2024)
    Download Citation