• Laser & Optoelectronics Progress
  • Vol. 61, Issue 5, 0500004 (2024)
Luoxian Zhou, Chengyu Zhu*, Hang Yuan, and Lü Zhiwei
Author Affiliations
  • National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, Heilongjiang , China
  • show less
    DOI: 10.3788/LOP230783 Cite this Article Set citation alerts
    Luoxian Zhou, Chengyu Zhu, Hang Yuan, Lü Zhiwei. Laser Parameters in Laser Shock Processing:Research Progress and Prospect[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0500004 Copy Citation Text show less
    References

    [1] Wu X Q, Huang C G. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 34, 011003(2022).

    [2] Luo G L, Zhang L F, Xiong Y et al. Effect of laser shock peening on microstructure and properties of Ti-6Al-3Nb-2Zr-1Mo titanium alloy[J]. Chinese Journal of Lasers, 49, 0802020(2022).

    [3] Xiang J Y, Ge M Z, Wang T M. Effect of laser shock peening on high-temperature tensile property of GH3039 superalloy[J]. Laser & Optoelectronics Progress, 59, 0716002(2022).

    [4] Sano Y, Kato T, Mizuta Y et al. Development of a portable laser peening device and its effect on the fatigue properties of HT780 butt-welded joints[J]. Forces in Mechanics, 7, 100080(2022).

    [5] Zhang C Y, Dong Y L, Ye C. Recent developments and novel applications of laser shock peening: a review[J]. Advanced Engineering Materials, 23, 2001216(2021).

    [6] Chen X P, Zhang L F, Xiong Y et al. Effect of laser shock strengthening on microstructure and properties of TC4 titanium alloy made by laser additive[J]. Chinese Journal of Lasers, 49, 1602017(2022).

    [7] Qiao H C, Hu X L, Zhao J B et al. Influence parameters and development application of laser shock processing[J]. Surface Technology, 48, 1-9, 53(2019).

    [8] Hu D Y, Li J J, Deng S et al. Multi-objective optimization on laser shock peening parameters based on residual stress[J]. Journal of Propulsion Technology, 39, 1590-1596(2018).

    [9] Gurusami K, Shanmuga Sundaram K, Chandramohan D et al. A comparative study on surface strengthening characterisation and residual stresses of dental alloys using laser shock peening[J]. International Journal of Ambient Energy, 42, 1740-1745(2021).

    [10] Phipps C R, Turner T P, Harrison R F et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J]. Journal of Applied Physics, 64, 1083-1096(1988).

    [11] Shannon M A, Mao X L, Russo R E. Monitoring laser-energy coupling to solid materials: plasma-shielding and phase change[J]. Materials Science and Engineering: B, 45, 172-179(1997).

    [12] Ma Q L, Motto-Ros V, Lei W Q et al. Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 65, 896-907(2010).

    [13] Shiva S S, Leela C, Kiran P P et al. Role of laser absorption and equation-of-state models on ns laser induced ablative plasma and shockwave dynamics in ambient air: numerical and experimental investigations[J]. Physics of Plasmas, 26, 072108(2019).

    [14] Yang B. Studies on shock mechanisms of propagation and attenuation in laser propulsion[D], 19-23(2007).

    [15] Fabbro R, Fournier J, Ballard P et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 68, 775-784(1990).

    [16] Heya M, Furukawa H, Tsuyama M et al. Simulations of the effects of laser wavelength, pulse duration, and power density on plume pressure generation using a one-dimensional simulation code for laser shock processing[J]. Journal of Applied Physics, 129, 235108(2021).

    [17] Rondepierre A, Ünaldi S, Rouchausse Y et al. Beam size dependency of a laser-induced plasma in confined regime: shortening of the plasma release. Influence on pressure and thermal loading[J]. Optics & Laser Technology, 135, 106689(2021).

    [18] Zhai P C, Dong Z W, Miao R et al. Investigation on the laser-induced shock pressure with condensed matter model[J]. Japanese Journal of Applied Physics, 54, 056203(2015).

    [19] Long J Y, Eliceiri M H, Ouyang Y X et al. Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J]. Optics and Lasers in Engineering, 137, 106334(2021).

    [20] Gonzalez-Avila S R, Denner F, Ohl C D. The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall[J]. Physics of Fluids, 33, 032118(2021).

    [21] Feng X T, He W F, Zhou L C et al. Stress field optimization and experimental investigation of titanium alloy lugs in aircraft by laser shock peening[J]. Surface Technology, 48, 127-134(2019).

    [22] Berthe L, Sollier A, Peyre P et al. The generation of laser shock waves in a water-confinement regime with 50 ns and 150 ns XeCl excimer laser pulses[J]. Journal of Physics D: Applied Physics, 33, 2142-2145(2000).

    [23] Berthe L, Fabbro R, Peyre P et al. Wavelength dependent of laser shock-wave generation in the water-confinement regime[J]. Journal of Applied Physics, 85, 7552-7555(1999).

    [24] Fairand B P, Clauer A H. Laser generation of high-amplitude stress waves in materials[J]. Journal of Applied Physics, 50, 1497-1502(1979).

    [25] Nguyen T T P, Tanabe R, Ito Y. Effects of liquid properties on the dynamics of under-liquid laser-induced shock process[J]. Applied Physics A, 122, 830(2016).

    [26] Nguyen T T P, Tanabe R, Ito Y. Effects of an absorptive coating on the dynamics of underwater laser-induced shock process[J]. Applied Physics A, 116, 1109-1117(2014).

    [27] Margetic V, Pakulev A, Stockhaus A et al. A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 55, 1771-1785(2000).

    [28] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).

    [29] Manikanta E, Vinoth Kumar L, Leela C et al. Effect of laser intensity on temporal and spectral features of laser generated acoustic shock waves: ns versus ps laser pulses[J]. Applied Optics, 56, 6902-6910(2017).

    [30] Stuart B C, Feit M D, Herman S et al. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B, 13, 459-468(1996).

    [31] Bovid S, Clauer A, Kattoura M et al. Measurement and characterization of nanosecond laser driven shockwaves utilizing photon Doppler velocimetry[J]. Journal of Applied Physics, 129, 205101(2021).

    [32] Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Optical and Quantum Electronics, 27, 1213-1229(1995).

    [33] Kukreja L M, Hoppius J S, Elango K et al. Optimization of processing parameters of ultrashort (100 fs‒2 ps) pulsed laser shock peening of stainless steel[J]. Journal of Laser Applications, 33, 042048(2021).

    [34] Vogel A, Busch S, Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water[J]. The Journal of the Acoustical Society of America, 100, 148-165(1996).

    [35] Nakhoul A, Rudenko A, Sedao X et al. Energy feedthrough and microstructure evolution during direct laser peening of aluminum in femtosecond and picosecond regimes[J]. Journal of Applied Physics, 130, 015104(2021).

    [36] Lian Y L, Hua Y H, Sun J Y et al. Martensitic transformation in temporally shaped femtosecond laser shock peening 304 steel[J]. Applied Surface Science, 567, 150855(2021).

    [37] Nakano H, Miyauti S, Butani N et al. Femtosecond laser peening of stainless steel[J]. Journal of Laser Micro, 4, 35-38(2009).

    [38] Lee D, Kannatey-Asibu E, Jr. Experimental investigation of laser shock peening using femtosecond laser pulses[J]. Journal of Laser Applications, 23, 022004(2011).

    [39] Elango K, Hoppius J S, Kukreja L M et al. Studies on ultra-short pulsed laser shock peening of stainless-steel in different confinement media[J]. Surface and Coatings Technology, 397, 125988(2020).

    [40] Banaś G, Elsayed-Ali H E, Lawrence F V, Jr et al. Laser shock-induced mechanical and microstructural modification of welded maraging steel[J]. Journal of Applied Physics, 67, 2380-2384(1990).

    [41] Chu J P, Rigsbee J M, Banaś G et al. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J]. Materials Science and Engineering: A, 260, 260-268(1999).

    [42] Bikdeloo R, Farrahi G H, Mehmanparast A et al. Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel[J]. Theoretical and Applied Fracture Mechanics, 105, 102429(2020).

    [43] Yakimets I, Richard C, Béranger G et al. Laser peening processing effect on mechanical and tribological properties of rolling steel 100Cr6[J]. Wear, 256, 311-320(2004).

    [44] Benavides O, de la Cruz May L, Mejia E B et al. Laser wavelength effect on nanosecond laser light reflection in ablation of metals[J]. Laser Physics, 26, 126101(2016).

    [45] Scalora M, Bloemer M J, Pethel A S et al. Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures[J]. Journal of Applied Physics, 83, 2377-2383(1998).

    [46] Wang Z G, Cai X, Chen Q L et al. Optical properties of metal-dielectric multilayers in the near UV region[J]. Vacuum, 80, 438-443(2006).

    [47] Palik E D[M]. Handbook of optical constants of solids(1998).

    [48] Chang J J, Warner B E. Laser-plasma interaction during visible-laser ablation of methods[J]. Applied Physics Letters, 69, 473-475(1996).

    [49] Naser H, Alghoul M A, Hossain M K et al. The role of laser ablation technique parameters in synthesis of nanoparticles from different target types[J]. Journal of Nanoparticle Research, 21, 249(2019).

    [50] Shen X J, Shukla P, Swanson P et al. Altering the wetting properties of orthopaedic titanium alloy (Ti-6Al-7Nb) using laser shock peening[J]. Journal of Alloys and Compounds, 801, 327-342(2019).

    [51] Hu Y X, Gong C, Yao Z Q et al. Investigation on the non-homogeneity of residual stress field induced by laser shock peening[J]. Surface and Coatings Technology, 203, 3503-3508(2009).

    [52] Fairand B P, Clauer A H, Jung R G et al. Quantitative assessment of laser-induced stress waves generated at confined surfaces[J]. Applied Physics Letters, 25, 431-433(1974).

    [53] Fairand B P, Wilcox B A, Gallagher W J et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 43, 3893-3895(1972).

    [54] Peyre P, Fabbro R, Berthe L et al. Laser shock processing with small impacts[J]. Proceedings of SPIE, 2789, 125-132(1996).

    [55] Petan L, Ocaña J L, Grum J. Influence of laser shock peening pulse density and spot size on the surface integrity of X2NiCoMo18-9-5 maraging steel[J]. Surface and Coatings Technology, 307, 262-270(2016).

    [56] Shen X J, Shukla P, Subramaniyan A K et al. Residual stresses induced by laser shock peening in orthopaedic Ti-6Al-7Nb alloy[J]. Optics & Laser Technology, 131, 106446(2020).

    [57] Prabhakaran S, Kulkarni A, Vasanth G et al. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel[J]. Applied Surface Science, 428, 17-30(2018).

    [58] Jiang Y F, Lai Y L, Zhang L et al. Investigation of residual stress hole on a metal surface by laser shock[J]. Chinese Journal of Lasers, 37, 2073-2079(2010).

    [59] Braisted W, Brockman R. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 21, 719-724(1999).

    [60] Cao Y P, Wang Z M, Shi W D et al. Formation mechanism and weights analysis of residual stress holes in E690 high-strength steel by laser shock peening[J]. Coatings, 12, 285(2022).

    [61] Zhang H P, Cai Z Y, Chi J X et al. Fatigue crack growth in residual stress fields of laser shock peened Ti6Al4V titanium alloy[J]. Journal of Alloys and Compounds, 887, 161427(2021).

    [62] Zou S K, Gong S L, Guo E M et al. Laser peening of turbine engine integrally blade rotor[J]. Chinese Journal of Lasers, 38, 0601009(2011).

    [63] Kostina A, Zhelnin M, Gachegova E et al. Finite-element study of residual stress distribution in Ti-6Al-4V alloy treated by laser shock peening with varying parameters[J]. Frattura Ed Integrità Strutturale, 16, 419-436(2022).

    [64] Mathew J, Kshirsagar R, Zabeen S et al. Machine learning-based prediction and optimisation system for laser shock peening[J]. Applied Sciences, 11, 2888(2021).

    [65] Sun R J, Cao Z W, Ma X G et al. Study on residual stress and fatigue properties of 2050 Al-Li alloy by laser shock[J]. Laser & Optoelectronics Progress, 60, 0114002(2023).

    [66] Hu T Y, Qiao H C, Zhao J B et al. Development of laser shock peening equipment[J]. Opto-Electronic Engineering, 44, 732-737, 743(2017).

    [67] Technologies L[M]. PROCUDO laser peening systems, 1-4(2019).

    [68] Shepard M J. Laser shock processing induced residual compression: impact on predicted crack growth threshold performance[J]. Journal of Materials Engineering and Performance, 14, 495-502(2005).

    [69] Körner J, Zulic S, Hein J et al. Compact, unstable cavity, cryogenically-cooled Yb∶YAG Q-switch laser for laser shock peening[J]. Proceedings of SPIE, 11777, 117770P(2021).

    [70] Ning C Y, Huang Y H, Xu Z F et al. Experimental study of electrochemical corrosion properties of 5052 aluminum alloy treated by new laser shock peening system[J]. Electromachining & Mould, 32-34(2017).

    [71] Tang Y, Ge M Z, Zhang Y K et al. Improvement of fatigue life of GH3039 superalloy by laser shock peening[J]. Materials, 13, 3849(2020).

    [72] Wang W, Sun L X, Zhang P et al. Reducing self-absorption effect by double-pulse combination in laser-induced breakdown spectroscopy[J]. Microchemical Journal, 172, 106964(2022).

    [73] Singh A P, Padhi U P, Joarder R. Insight into the evolution of laser-induced plasma during successive deposition of laser energy[J]. Journal of Applied Physics, 131, 073301(2022).

    [74] Favre A, Morel V, Bultel A et al. Double pulse laser-induced plasmas on W and Al by ps-LIBS: focus on the plasma-second pulse interaction[J]. Fusion Engineering and Design, 168, 112364(2021).

    [75] Courapied D, Berthe L, Peyre P et al. Laser-delayed double shock-wave generation in water-confinement regime[J]. Journal of Laser Applications, 27, S29101(2015).

    [76] Zhou L X, Zhu C Y, Yuan H et al. Study on the correlation between external plasma plumes and stress distribution inside a target immediately after surface laser loading[J]. Optics & Laser Technology, 141, 107096(2021).

    Luoxian Zhou, Chengyu Zhu, Hang Yuan, Lü Zhiwei. Laser Parameters in Laser Shock Processing:Research Progress and Prospect[J]. Laser & Optoelectronics Progress, 2024, 61(5): 0500004
    Download Citation