• Chinese Optics Letters
  • Vol. 22, Issue 4, 040603 (2024)
Wenyu Du1, Sen Gao2, Xiaojuan Zhang1, Siqi Li1..., Yan Kuai1, Zhiqiang Wang1, Zhigang Cao1, Feng Xu1, Yu Liu1, Lin Xu1, Junxi Zhang2, Kang Xie3, Benli Yu1 and Zhijia Hu1,*|Show fewer author(s)
Author Affiliations
  • 1Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Opto-electronics Engineering, Anhui University, Hefei 230601, China
  • 2School of Instrument Science and Opto-electronics Engineering, Laboratory of Optical Fibers and Micro-nano Photonics, Hefei University of Technology, Hefei 230009, China
  • 3School of Opto-electronic Engineering, Zaozhuang University, Zaozhuang 277160, China
  • show less
    DOI: 10.3788/COL202422.040603 Cite this Article Set citation alerts
    Wenyu Du, Sen Gao, Xiaojuan Zhang, Siqi Li, Yan Kuai, Zhiqiang Wang, Zhigang Cao, Feng Xu, Yu Liu, Lin Xu, Junxi Zhang, Kang Xie, Benli Yu, Zhijia Hu, "Picosecond gain-switched polymer fiber random lasers," Chin. Opt. Lett. 22, 040603 (2024) Copy Citation Text show less
    References

    [1] S. Garcia-Revilla, J. Fernandez, M. Barredo-Zuriarrain et al. Diffusive random laser modes under a spatiotemporal scope. Opt. Express, 23, 1456(2015).

    [2] W. Gao, T. Wang, J. Xu et al. Robust and flexible random lasers using perovskite quantum dots coated nickel foam for speckle-free laser imaging. Small, 17, 2103065(2021).

    [3] T. Zhai, X. Zhang, Z. Pang et al. Random laser based on waveguided plasmonic gain channels. Nano Lett., 11, 4295(2011).

    [4] Z. Hu, H. Zheng, L. Wang et al. Random fiber laser of POSS solution-filled hollow optical fiber by end pumping. Opt. Commun., 285, 3967(2012).

    [5] Z. Hu, B. Miao, T. Wang et al. Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser. Opt. Lett., 38, 4644(2013).

    [6] Z. Hu, Y. Liang, X. Qian et al. Polarized random laser emission from an oriented disorder polymer optical fiber. Opt. Lett., 41, 2584(2016).

    [7] Z. Hu, J. Xia, Y. Liang et al. Tunable random polymer fiber laser. Opt. Express, 25, 18421(2017).

    [8] M. Asuncion Illarramendi, J. Zubia, I. Bikandi et al. Pump-polarization effects in dye-doped polymer optical fibers. J. Light. Technol., 36, 4090(2018).

    [9] S. Garcia-Revilla, I. Sola, R. Balda et al. Two-photon pumped random lasing in a dye-doped silica gel powder. Proc. SPIE, 7598, 759804(2010).

    [10] S. John, G. Pang. Theory of lasing in a multiple-scattering medium. Phys. Rev. A, 54, 3642(1996).

    [11] X. Jiang, C. M. Soukoulis. Time dependent theory for random lasers. Phys. Rev. Lett., 85, 70(2000).

    [12] C. M. Soukoulis, X. Jiang, J. Y. Xu et al. Dynamic response and relaxation oscillations in random lasers. Phys. Rev. B, 71, 041103(2005).

    [13] W. L. Sha, C. H. Liu, R. R. Alfano. Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media. Opt. Lett., 19, 1922(1994).

    [14] E. Pecoraro, S. Garcia-Revilla, R. A. S. Ferreira et al. Real time random laser properties of Rhodamine-doped di-ureasil hybrids. Opt. Express, 18, 7470(2010).

    [15] X. Shi, Q. Chang, J. Tong et al. Temporal profiles for measuring threshold of random lasers pumped by ns pulses. Sci. Rep., 7, 5325(2017).

    [16] Z. Wang, X. Shi, S. Wei et al. Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Phys. Lett., 11, 095002(2014).

    [17] J. Tian, G. Weng, Y. Liu. Gain-switching in CsPbBr3 microwire lasers. Commun. Phys., 5, 160(2022).

    [18] R. I. Woodward, Y. S. Lo, M. Pittaluga. Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers. npj Quantum Inf., 7, 58(2021).

    [19] M. Jiang, P. Tayebati. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser. Opt. Lett., 32, 1797(2007).

    [20] J. Yang, Y. Tang, J. Xu. Development and applications of gain-switched fiber lasers. Photonics Res., 1, 52(2013).

    [21] A. L. Moura, P. I. R. Pincheira, A. S. Reyna. Replica symmetry breaking in the photonic ferromagneticlike spontaneous mode-locking phase of a multimode Nd:YAG laser. Phys. Rev. Lett., 119, 163902(2017).

    [22] F. Antenucci, G. Lerario, B. S. Fernandez. Demonstration of self-starting nonlinear mode locking in random lasers. Phys. Rev. Lett., 126, 173901(2021).

    [23] H. Zhang, H. Zhang, C. Yang et al. Ultra-photo-stable coherent random laser based on liquid waveguide gain channels doped with boehmite nanosheets. Photonics Nanostruct., 28, 75(2018).

    [24] T. Xian, W. Wang, L. Zhan. Real time revealing relaxation dynamics of ultrafast mode-locked lasers. Phys. Rev. Res., 4, 013202(2022).

    [25] F. X. Kurtner, J. A. Au, U. Keller. Mode-locking with slow and fast saturable absorbers-what’s the difference?. IEEE J. Sel. Top. Quantum Electron., 4, 159(1998).

    [26] M. Jiang, T. Parviz. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser. Opt. Lett., 32, 1797(2007).

    Wenyu Du, Sen Gao, Xiaojuan Zhang, Siqi Li, Yan Kuai, Zhiqiang Wang, Zhigang Cao, Feng Xu, Yu Liu, Lin Xu, Junxi Zhang, Kang Xie, Benli Yu, Zhijia Hu, "Picosecond gain-switched polymer fiber random lasers," Chin. Opt. Lett. 22, 040603 (2024)
    Download Citation