[1] Chance, F. S., Abbott, L. F. and Reyes, A. D., “Gain modulation from background synaptic input,” Neuron 35, 773–782 (2002).
[2] Augustine, G. J., Santamaria, F. and Tanaka, K., “Local calcium signaling in neurons,” Neuron 40, 331–346 (2003).
[3] Gabbiani, F., Krapp, H. G., Koch, C. and Laurent, G., “Multiplicative computation in a visual neuron sensitive to looming,” Nature 420, 320–324 (2002).
[4] Yuste, R. and Tank, D.W., “Dendritic integration in mammalian neurons, a century after Cajal,” Neuron 16, 701–716 (1996).
[5] Yuste, R. and Denk, W., “Dendritic spines as basic functional units of neuronal integration,” Nature 375, 682–684 (1995).
[6] Seamans, J. K., Gorelova, N. A. and Yang, C. R., “Contributions of voltage-gated Ca2+ channels in the proximal versus distal dendrites to synaptic integration in prefrontal cortical neurons,” J. Neurosci. 17, 5936–5948 (1997).
[7] Pawley, J. B., Handbook of Biological Confocal Microscopy (Plenum Press, New York, 1995).
[8] Fan, G. Y., Fujisaki, H., Miyawaki, A., Tsay, R. K., Tsien, R. Y. and Ellisman, M. H., “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[9] Bewersdorf, J., Pick, R. and Hell, S. W., “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[10] Kurtz, R., Fricke, M., Kalb, J., Tinnefeld, P. and Sauer, M., “Application of multiline two-photon microscopy to functional in vivo imaging,” J. Neurosci. Methods 151, 276–286 (2006).
[11] Iyer, V., Losavio, B. E. and Saggau, P., “Compensation of spatial and temporal dispersion for acoustooptic multiphoton laserscanning microscopy,” J. Biomed. Opt. 8, 460–471 (2003).
[12] Iyer, V., Hoogland, T. M. and Saggau, P., “Fast functional imaging of single neurons using randomaccess multiphoton (RAMP) microscopy,” J. Neurophysiol. 95, 535–545 (2006).
[13] G¨ahwiler, B. H., Capogna, M. and Debanne, D., Organotypic slice cultures: a technique has come of age,” Trends Neurosci. 20(10), 471–477 (1997).
[14] Larkum, M. E., Kaiser, K. M. M. and Sakmann, B., “Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials,” Proc. Natl. Acad. Sci. 96, 14600–14604 (1998).
[15] Markram, H., Helm, P. J. and Sakmann, B., “Dendritic calcium transients evoked by single back-propagating action potentials in neocortical pyramidal neurons,” J. Physiol. 485, 1–20 (1995).
[16] Lv, X. H., Zhan, C., Zeng, S. Q., Chen, W. R. and Luo, Q. M., “Construction of multiphoton laser scanning microscope based on dual-axis acoustooptic deflector,” Rev. Sci. Instrum. 77, 046101-3 (2006).
[17] Watanabe, S., Hong, M., Ross, N. L. and Ross, W. N., “Modulation of calcium wave propagation in the dendrites and to the soma of rat hippocampal pyramidal neurons,” J. Physiol. 575, 455–468 (2006).
[18] Koester, H. J. and Sakmann, B., “Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials,” Proc. Natl. Acad. Sci. 95, 9596–9601 (1998).
[19] Oakley, J. C., Schwindt, P. C. and Crill, W. E., “Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma,” J. Neurophysiol. 86, 514–527 (2001).
[20] Larkum, M. E., Senn, W. and L¨uscher, H. R., “Topdown dendritic input increases the gain of layer 5 pyramidal neurons,” Cerebral Cortex 14, 1059–1070 (2004).
[21] Oviedo, H. and Reyes, A. D., “Variation of input– output properties along the somatodendritic axis of pyramidal neurons,” J. Neurosci. 25, 4985–4995 (2005).
[22] Schiller, J., Schiller, Y., Stuart, G. J. and Sakmann, B., “Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons,” J. Physiol. 505, 605–616 (1997).
[23] Bannister, N. J. and Larkman, A. U., “Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus II Spine distributions,” J. Comp. Neurol. 360, 161–171 (1995).
[24] Megias, M., Emri, Z., Freund, T. F. and Gulyas, A. I., “Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells,” Neuroscience 102, 527–540 (2001).
[25] Jacob, S. N., Choe, C. U., Uhlen, P., DeGray, B., Yeckel, M. F. and Ehrlich, B. E., “Signaling microdomains regulate inositol 1,4,5-trisphosphatemediated intracellular calcium transients in cultured neurons,” J. Neurosci. 25, 2853–2864 (2005).
[26] Schiller, J., Helmchen, F. and Sakmann, B., “Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurons,” J. Physiol. 487, 583–600 (1995).
[27] Connors, B. W., Gutnick, M. J. and Prince, D. A., “Electrophysiological properties of neocortical neurons in vitro,” J. Neurophysiol. 48, 1302–1320 (1982).
[28] Helmchen, F., Svoboda, K., Denk, W. and Tank, D. W., “In vivo dendritic calcium dynamics in deeplayer cortical pyramidal neurons,” Nat. Neurosci. 2, 989–996 (1999).
[29] Ha¨usser, M., Major, G. and Stuart, G., “Differential shunting of EPSPs by action potentials,” Science 291, 138–141 (2001).
[30] Saggau, P., “New methods and uses for fast optical scanning,” Current Opinion Neurobiol. 16, 543–550 (2006).