• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1215002 (2023)
Guanglin An1,2, Zonggang Li1,2,*, Yajiang Du1,2, and Huifeng Kang3
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • 2Robot Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • 3College of Aerospace Engineering, North China Institute of Aerospace Engineering, Langfang 065000, Hebei, China
  • show less
    DOI: 10.3788/LOP220857 Cite this Article Set citation alerts
    Guanglin An, Zonggang Li, Yajiang Du, Huifeng Kang. Multiple Workpiece Grasping Point Localization Method Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1215002 Copy Citation Text show less
    Network structure of improved GB-FRN-YOLOv5
    Fig. 1. Network structure of improved GB-FRN-YOLOv5
    Chart of target example angle change. (a) Image before scaling; (b) scaled image
    Fig. 2. Chart of target example angle change. (a) Image before scaling; (b) scaled image
    Schematic diagram of definition of rotating frame
    Fig. 3. Schematic diagram of definition of rotating frame
    Schematic diagram of feature unaligned
    Fig. 4. Schematic diagram of feature unaligned
    Schematic diagrams of feature refinement stage. (a) Schematic diagram of feature reconstruction; (b) bilinear interpolation
    Fig. 5. Schematic diagrams of feature refinement stage. (a) Schematic diagram of feature reconstruction; (b) bilinear interpolation
    Module of Ghost bottleneck
    Fig. 6. Module of Ghost bottleneck
    Schematic diagram of ordinary convolutional layer and Ghost module calculation
    Fig. 7. Schematic diagram of ordinary convolutional layer and Ghost module calculation
    Feature map of attentional multiscale
    Fig. 8. Feature map of attentional multiscale
    Training loss function of improved GB-FRN-YOLOv5 model
    Fig. 9. Training loss function of improved GB-FRN-YOLOv5 model
    Workpiece detection result graphs of different algorithms. (a) CAD-Net; (b) R3Det; (c) Gliding vertex; (d) GB-FRN-YOLOv5
    Fig. 10. Workpiece detection result graphs of different algorithms. (a) CAD-Net; (b) R3Det; (c) Gliding vertex; (d) GB-FRN-YOLOv5
    Comparison of two models. (a) Test plots of model D; (b) test plots of model E
    Fig. 11. Comparison of two models. (a) Test plots of model D; (b) test plots of model E
    Cropping schematic of two detection methods. (a) (b) Detection map and image cropping of YOLOv5;(c) (d) detection map and image cropping of GB-FRN-YOLOv5
    Fig. 12. Cropping schematic of two detection methods. (a) (b) Detection map and image cropping of YOLOv5;(c) (d) detection map and image cropping of GB-FRN-YOLOv5
    Image processing to obtain workpiece centroid. (a) Original image; (b) grayscale; (c) median filtering; (d) binarization; (e) inversion of binarization; (f) centroid calculation
    Fig. 13. Image processing to obtain workpiece centroid. (a) Original image; (b) grayscale; (c) median filtering; (d) binarization; (e) inversion of binarization; (f) centroid calculation
    NameConfigurationTraining parameterParameter value
    GPUGeForce RTX 2080tiWarmup_epochs5.0
    CPUIntel(R)Xeon(R)CPUE52680 v2Warmup_momentum0.95
    CUDA10.1Learning rate0.01
    CuDNN7.6.5Weight decay0.001
    Table 1. Hardware configuration and model parameters
    Detection algorithmAccuracy of detection for each type of target AP /%mAP /%FPS
    boltkitbushingcrossboltbucklesupportplate
    YOLOv588.2184.1483.6785.2387.2190.7886.5465.16
    CAD-Net84.4181.3482.4286.6586.1591.0785.3458.46
    R3Det83.6581.2480.1385.2585.3389.6684.2160.51
    Gliding vertex87.7885.2684.0286.6688.1391.5987.2463.26
    GB-FRN-YOLOv590.8590.5590.8490.8290.7990.9090.7971.43
    Table 2. Experimental result comparison of GB-FRN-YOLOV5 algorithm and other detection algorithms
    ModelsABCDE
    YOLOV5
    FRN
    Data pre-processing module
    Ghost bottleneck
    Attention mechanism
    mAP /%86.5488.1388.5688.7590.79
    FPS65.1663.9563.4172.1671.43
    Table 3. Effect of different modules on detection performance
    Guanglin An, Zonggang Li, Yajiang Du, Huifeng Kang. Multiple Workpiece Grasping Point Localization Method Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1215002
    Download Citation