• Advanced Photonics
  • Vol. 7, Issue 2, 026007 (2025)
Qing Yang1, Yan Huang1, Houyi Cheng1,2, Reza Rouzegar3..., Renyou Xu1, Shijie Xu1,2, Jie Zhang1,4, Fan Zhang1,2, Yong Xu1,2,4, Lianggong Wen1,5, Weisheng Zhao1,2,4,5 and Tianxiao Nie1,2,4,5,*|Show fewer author(s)
Author Affiliations
  • 1Beihang University, School of Integrated Circuit Science and Engineering, MIIT Key Laboratory of Spintronics, Beijing, China
  • 2Beihang University, Hefei Innovation Research Institute, Hefei, China
  • 3Freie Universität Berlin, Institute of Physics, Berlin, Germany
  • 4Beihang University, Institute of International Innovation, National Key Lab of Spintronics, Hangzhou, China
  • 5Beihang University, Qingdao Innovation Research Institute, Qingdao, China
  • show less
    DOI: 10.1117/1.AP.7.2.026007 Cite this Article Set citation alerts
    Qing Yang, Yan Huang, Houyi Cheng, Reza Rouzegar, Renyou Xu, Shijie Xu, Jie Zhang, Fan Zhang, Yong Xu, Lianggong Wen, Weisheng Zhao, Tianxiao Nie, "Broadband polarization spectrum tuning enabled by the built-in electric field of patterned spintronic terahertz emitters," Adv. Photon. 7, 026007 (2025) Copy Citation Text show less
    References

    [1] D. Khusyainov et al. Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure. Sci. Rep., 11, 697(2021).

    [2] J. Ma et al. Frequency-division multiplexer and demultiplexer for terahertz wireless links. Nat. Commun., 8, 729(2017).

    [3] J. Ma et al. Security and eavesdropping in terahertz wireless links. Nature, 563, 89-93(2018).

    [4] S. H. Lee et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 11, 936-941(2012).

    [5] S. Lee et al. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv. Mater., 32, 2000250(2020).

    [6] S.-C. Chen et al. All optically driven memory device for terahertz waves. Opt. Lett., 45, 236-239(2020).

    [7] S. Chen, L. Du, L. Zhu. THz wave computational ghost imaging: principles and outlooks. Opto-Electron. Eng., 47, 200024(2020).

    [8] W.-T. Su et al. Physics-guided terahertz computational imaging(2022).

    [9] B. Wen et al. Physics-driven machine learning for computational imaging: part 2 [from the guest editors]. IEEE Signal Process. Mag., 40, 13-15(2023).

    [10] W. J. Choi et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by Kirigami polarization modulators. Nat. Mater., 18, 820-826(2019).

    [11] G. Acbas et al. Optical measurements of long-range protein vibrations. Nat. Commun., 5, 3076(2014).

    [12] C. Zhang et al. Driving DNA origami assembly with a terahertz wave. Nano Lett., 22, 468-475(2021).

    [13] Q. Yang et al. Fast tunable biological fluorescence detection device with integrable liquid crystal filter. Crystals, 11, 272(2021).

    [14] J. Neu, C. A. Schmuttenmaer. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys., 124, 231101(2018).

    [15] P. Shumyatsky, R. R. Alfano. Terahertz sources. J. Biomed. Opt., 16, 033001(2011).

    [16] S. Dhillon et al. The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys., 50, 043001(2017).

    [17] T.-J. Yen et al. Terahertz magnetic response from artificial materials. Science, 303, 1494-1496(2004).

    [18] R. I. Stantchev et al. Real-time terahertz imaging with a single-pixel detector. Nat. Commun., 11, 2535(2020).

    [19] X. Chen et al. Efficient generation and arbitrary manipulation of chiral terahertz waves emitted from Bi2Te3-Fe heterostructures. Adv. Photonics Res., 2, 2000099(2021). https://doi.org/10.1002/adpr.202000099

    [20] P. Li et al. Spintronic terahertz emission with manipulated polarization (STEMP). Front. Optoelectron., 15, 12(2022).

    [21] S. Kovalev et al. Electrical tunability of terahertz nonlinearity in graphene. Sci. Adv., 7, eabf9809(2021).

    [22] T. Kan et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun., 6, 8422(2015).

    [23] N. Nemoto et al. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses. Opt. Express, 22, 17915-17929(2014).

    [24] J.-B. Masson, G. Gallot. Terahertz achromatic quarter-wave plate. Opt. Lett., 31, 265-267(2006).

    [25] M. Jia et al. Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces. Light: Sci. Appl., 8, 16(2019).

    [26] B. Knyazev et al. Generation of terahertz surface plasmon polaritons using nondiffractive Bessel beams with orbital angular momentum. Phys. Rev. Lett., 115, 163901(2015).

    [27] X. Zhao et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica, 5, 303-310(2018).

    [28] Q. Wang et al. A broadband metasurface-based terahertz flat-lens array. Adv. Opt. Mater., 3, 779-785(2015).

    [29] X. Zang et al. Metasurfaces for manipulating terahertz waves. Light: Adv. Manuf., 2, 148-172(2021).

    [30] T. Dong et al. Nonlinear THz-nano metasurfaces. Adv. Funct. Mater., 31, 2100463(2021).

    [31] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [32] X. Luo. Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater., 6, 1701201(2018).

    [33] F. Aieta et al. Reflection and refraction of light from metasurfaces with phase discontinuities. J. Nanophotonics, 6, 063532(2012).

    [34] D. R. Smith, J. B. Pendry, M. C. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [35] D. Kong et al. Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv. Opt. Mater., 7, 1900487(2019).

    [36] J. Shan, J. I. Dadap, T. F. Heinz. Circularly polarized light in the single-cycle limit: the nature of highly polychromatic radiation of defined polarization. Opt. Express, 17, 7431-7439(2009).

    [37] J. Zhang, Y. Gong. A review of terahertz wave plate on metasurface. J. Opt., 1-23(2024).

    [38] H.-J. Zhao et al. Active terahertz beam manipulation with photonic spin conversion based on a liquid crystal Pancharatnam–Berry metadevice. Photonics Res., 10, 2658-2666(2022).

    [39] Y. Sun et al. Flexible control of broadband polarization in a spintronic terahertz emitter integrated with liquid crystal and metasurface. ACS Appl. Mater. Interfaces, 14, 32646-32656(2022).

    [40] H. Qiu et al. Magnetically and electrically polarization-tunable THz emitter with integrated ferromagnetic heterostructure and large-birefringence liquid crystal. Appl. Phys. Express, 11, 092101(2018).

    [41] S. Wang et al. Electrically active terahertz liquid-crystal metasurface for polarization vortex beam switching. Laser Photonics Rev., 18, 2301301(2024).

    [42] A. Ferraro et al. Flexible terahertz wire grid polarizer with high extinction ratio and low loss. Opt. Lett., 41, 2009-2012(2016).

    [43] Y. Xu et al. Stereo metasurfaces for efficient and broadband terahertz polarization conversion. Adv. Funct. Mater., 32, 2207269(2022).

    [44] X. Zhuang et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light: Sci. Appl., 12, 14(2023).

    [45] X. Chen et al. Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters. Appl. Phys. Lett., 115, 221104(2019).

    [46] Y. Li et al. A room-temperature terahertz photodetector imaging with high stability and polarization-sensitive based on perovskite/metasurface. Adv. Sci., 12, 2407634(2024).

    [47] S.-C. Jiang et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X, 4, 021026(2014).

    [48] C. Pfeiffer et al. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica, 3, 427-432(2016).

    [49] B. Wang et al. Wavelength de-multiplexing metasurface hologram. Sci. Rep., 6, 35657(2016).

    [50] S. Zhou et al. Phase change induced active metasurface devices for dynamic wavefront control. J. Phys. D: Appl. Phys., 53, 204001(2020).

    [51] E. Kaya et al. Multilayer graphene broadband terahertz modulators with flexible substrate. J. Infrared Millim. THz. Waves, 39, 483-491(2018).

    [52] L. Cheng et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys., 15, 347-351(2019). https://doi.org/10.1038/s41567-018-0406-3

    [53] Y. Wu et al. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. Light: Sci. Appl., 13, 146(2024).

    [54] P. Agarwal et al. Interfacial spintronic THz emission. Adv. Opt. Mater., 12, 2400077(2024).

    [55] Y. Xu et al. Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments. Nat. Commun., 15, 2043(2024).

    [56] P. Yadav et al. Highly efficient spintronic terahertz emitter utilizing a large spin hall conductivity of type-II Dirac semimetal PTTE2. Nano Lett., 24, 2376-2383(2024).

    [57] Y. Zhao et al. Quantifying spin-charge conversion mechanisms for THz emission in magnetic multilayers. Adv. Opt. Mater., 12, 2302571(2024).

    [58] D. Hamara et al. Ultra-high spin emission from antiferromagnetic Ferh. Nat. Commun., 15, 4958(2024).

    [59] K. Abdukayumov et al. Atomic-layer controlled transition from inverse Rashba–Edelstein effect to inverse spin Hall effect in 2D PtSe2 probed by THz spintronic emission. Adv. Mater., 36, 2304243(2024). https://doi.org/10.1002/adma.202304243

    [60] T. Sun et al. Generation of tunable terahertz waves from tailored versatile spintronic meta-antenna arrays. ACS Appl. Mater. Interfaces, 15, 23888-23898(2023).

    [61] H. Wang et al. Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators. Nat. Commun., 14, 5173(2023). https://doi.org/10.1038/s41467-023-40714-y

    [62] X. Chen et al. Generation and control of terahertz spin currents in topology-induced 2D ferromagnetic Fe3GeTe2|Bi2Te3 heterostructures. Adv. Mater., 34, 2106172(2022). https://doi.org/10.1002/adma.202106172

    [63] G. Li et al. Triple interface optimization of Ru-based electrocatalyst with enhanced activity and stability for hydrogen evolution reaction. Adv. Funct. Mater., 33, 2212514(2023).

    [64] Q. Yang et al. Development of high performance spintronic terahertz source and its application prospect in biomedicine. Mater. C, 40, 948-962(2021).

    [65] S. Wang et al. Nanoengineered spintronic-metasurface terahertz emitters enable beam steering and full polarization control. Nano Lett., 22, 10111-10119(2022).

    [66] S. Wang et al. Flexible generation of structured terahertz fields via programmable exchange-biased spintronic emitters. eLight, 4, 11(2024).

    [67] M. Tong et al. Light-driven spintronic heterostructures for coded terahertz emission. ACS Nano, 16, 8294-8300(2022).

    [68] L. Luo et al. Broadband terahertz generation from metamaterials. Nat. Commun., 5, 3055(2014).

    [69] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [70] C. McDonnell et al. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nat. Commun., 12, 30(2021).

    [71] C. Liu et al. Active spintronic-metasurface terahertz emitters with tunable chirality. Adv. Photonics, 3, 056002(2021).

    [72] G. Schmidt, B. Das-Mohapatra, E. T. Papaioannou. Charge dynamics in spintronic terahertz emitters. Phys. Rev. Appl., 19, L041001(2023).

    [73] T. Kampfrath et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol., 8, 256-260(2013).

    [74] R. Rouzegar et al. Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization. Phys. Rev. B, 106, 144427(2022).

    [75] T. Seifert et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics, 10, 483-488(2016).

    [76] R. Carrel. The design of log-periodic dipole antennas, 61-75(1966).

    [77] C. Jin et al. Quarter-mode substrate integrated waveguide and its application to antennas design. IEEE Trans. Antennas Propag., 61, 2921-2928(2013).

    [78] O. O. Olaode, W. D. Palmer, W. T. Joines. Effects of meandering on dipole antenna resonant frequency. IEEE Antennas Wireless Propag. Lett., 11, 122-125(2012).

    [79] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 36, 961-1005(1990).

    [80] S. R. Cloude, K. P. Papathanassiou. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens., 36, 1551-1565(1998).

    [81] M. Schimmel. Phase cross-correlations: design, comparisons, and applications. Bull. Seismol. Soc. Amer., 89, 1366-1378(1999).

    [82] D. J. Fleet. Disparity from local weighted phase-correlation, 48-54(1994).

    [83] N. Laman, M. Bieler, H. Van Driel. Ultrafast shift and 4 injection currents observed in Wurtzite semiconductors via emitted terahertz radiation. J. Appl. Phys., 98, 103507(2005).

    [84] F. Nastos, J. Sipe. Optical rectification and current injection in unbiased semiconductors. Phys. Rev. B, 82, 235204(2010).

    [85] J. Sipe, A. Shkrebtii. Second-order optical response in semiconductors. Phys. Rev. B, 61, 5337-5352(2000).

    [86] F. Nastos, J. Sipe. Optical rectification and shift currents in GaAs and gap response: below and above the band gap. Phys. Rev. B, 74, 035201(2006).

    [87] L. Braun et al. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3. Nat. Commun., 7, 13259(2016). https://doi.org/10.1038/ncomms13259

    [88] G. Milione et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [89] N. A. Rubin, Z. Shi, F. Capasso. Polarization in diffractive optics and metasurfaces. Adv. Opt. Photonics, 13, 836-970(2021).

    Qing Yang, Yan Huang, Houyi Cheng, Reza Rouzegar, Renyou Xu, Shijie Xu, Jie Zhang, Fan Zhang, Yong Xu, Lianggong Wen, Weisheng Zhao, Tianxiao Nie, "Broadband polarization spectrum tuning enabled by the built-in electric field of patterned spintronic terahertz emitters," Adv. Photon. 7, 026007 (2025)
    Download Citation