• Laser & Optoelectronics Progress
  • Vol. 53, Issue 6, 61408 (2016)
Peng Guoliang*, Wei Chenghua, Du Taijiao, and Zhang Xianghua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.061408 Cite this Article Set citation alerts
    Peng Guoliang, Wei Chenghua, Du Taijiao, Zhang Xianghua. Effect of Airflow on Metal Plate Melted Through by Laser[J]. Laser & Optoelectronics Progress, 2016, 53(6): 61408 Copy Citation Text show less
    References

    [1] Peng Guoliang, Yan Hui, Liu Feng, et al.. Oxidation effect for laser irradiating the metal [J]. Infrared and Laser Engineering, 2013(5): 1253-1257.

    [2] Wei Chenghua, Wang Lijun, Liu Weiping, et al.. Thermal response of 45# steel coupling with multi-layer oxide film evolution by laser radiation[J]. Optics and Precision Engineering, 2014, 22(8): 2061-2066.

    [3] Johnson R L, O′keefe J D. Laser burn through time reduction due to tangential airflow - an interpolation formula[J]. AIAA Journal, 1974, 12(8): 1106-1109.

    [4] O′keefe J D, Johnson R L. Laser melt through time reduction due to aerodynamic melt removal[J]. AIAA Journal, 1976, 14(6): 776-780.

    [5] Robin J E, Nordin P. Enhancement of cw laser melt-through of opaque solid materials by supersonic transverse gas flow[J]. Applied Physics Letters, 1975, 26(6): 289-292.

    [6] Robin J E, Nordin P. Effects of gravitationally induced melt removal on cw laser melt-through of opaque solids[J]. Applied Physics Letters, 1975, 27(11): 593-595.

    [7] Robin J E, Nordin P. Reduction of cw laser melt-through times in solid materials by transverse gas flow[J]. Journal of Applied Physics, 1975, 46(6): 2538-2543.

    [8] Crane K C A, Garnsworthy R K, Mathias L E S. Ablation of materials subjected to laser radiation and high-speed gas flows[J]. Journal of Applied Physics, 1980, 51(11): 5954-5961.

    [9] Steen W, Mazumder J. Laser material processing[M]. London: Springer Science & Business Media, 2010.

    [10] Kwon H, Baek W K, Kim M S, et al.. Temperature-dependent absorptance of painted aluminum, stainless steel 304, and titanium for 1.07 μm and 10.6 μm laser beams[J]. Optics and Lasers in Engineering, 2012, 50(2): 114-121.

    [11] Baek W K, Lee K C, An S I, et al.. Melt-through characteristics in continuous beam irradiation of flying metal samples in flow speeds up to 85 m/s[J]. Optics & Laser Technology, 2013, 45: 250-255.

    [12] Du Qiu, Hang Xiaolin, Wang Mingdi, et al.. Mechanism and experimental study of laser milling on laser cladding parts[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101403.

    [13] Liu Haiqing, Liu Xiubo, Meng Xiangjun, et al.. Study on γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS high-temperature self-lubricating wear resistant composite coating on Ti-6Al-4V by laser cladding[J]. Chinese J Lasers, 2014, 41(3): 0303005.

    [14] Zhang Dongyun, Wu Rui, Zhang Huifeng, et al.. Numerical simulation of temperature field evolution in the process of laser metal deposition[J]. Chinese J Lasers, 2015, 42(5): 0503006.

    [15] Zhang Li, He Jia, Tan Fuli. Numerical simulation of metal plates under laser irradiation based on fluid-solid coupling[J]. High Power Laser and Particle Beams, 2011, 23(4): 866-870.

    [16] Yan Xiangfeng. Numerical calculation of the metal melting in the laser loading process[D]. Shenyang: Shenyang Aerospace University, 2013.

    [17] Zhao Tiancong. A handbook for extractive metallurgy of nonferrous metals[M]. Beijing: Metallurgical Industry Press, 1999.

    CLP Journals

    [1] Li Xinmeng, Jiang Houman, Zhang Tianyu. Reflectivity Change of 45# Steel at 3.8 μm Under 915 nm Laser Irradiation[J]. Laser & Optoelectronics Progress, 2017, 54(7): 71401

    [2] Wang Qiushi, Pang Bo, Zhang Yizhuo, Hu Wenhua, Li Zhongjian. Damage Mechanism of Aluminum by Long-Short Composite Pulsed Laser[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101404