[1] Ye L, Qian J, Haitjema H et al. On-machine chromatic confocal measurement for micro-EDM drilling and milling[J]. Precision Engineering, 76, 110-123(2022).
[2] Qu D J, Zhou Z D, Li Z W et al. Wafer eccentricity deviation measurement method based on line-scanning chromatic confocal 3D profiler[J]. Photonics, 10, 398-412(2023).
[3] Lishchenko N, O’Donnell G E, Culleton M. Contactless method for measurement of surface roughness based on a chromatic confocal sensor[J]. Machines, 11, 836-862(2023).
[4] Leach R K[M]. Optical measurement of surface topography, 10-11(2011).
[5] Browne M A, Akinyemi O, Crossley F et al. Stage-scanned chromatically aberrant confocal microscope for 3-D surface imaging[J]. Proceedings of SPIE, 1660, 532-541(1992).
[6] Keller P J, Schmidt A D, Wittbrodt J et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 322, 1065-1069(2008).
[7] Bai H D, Xu N, Zhou J K et al. Compact long-axial dispersive chromatic confocal lens[J]. Acta Optica Sinica, 43, 1422001(2023).
[8] Duque D, Garzón J. Effects of both diffractive element and fiber optic based detector in a chromatic confocal system[J]. Optics & Laser Technology, 50, 182-189(2013).
[10] Shao T B, Guo W P, Xi Y H et al. Design and performance evaluation of chromatic confocal displacement sensor with high measuring range[J]. Chinese Journal of Lasers, 49, 1804002(2022).
[11] Lel V V, Al-Sibai F, Leefken A et al. Local thickness and wave velocity measurement of wavy films with a chromatic confocal imaging method and a fluorescence intensity technique[J]. Experiments in Fluids, 39, 856-864(2005).
[12] Zhang Z L, Lu R S, Zhang A L et al. Monochromatic LED-based spectrally tunable light source for chromatic confocal sensors[J]. Optical Engineering, 62, 024102(2023).
[13] Bai H D, Zhao Y, Zhou J K et al. Wide field-of-view axial dispersion lens with adjustable performance parameters[J]. Acta Optica Sinica, 43, 2022001(2023).
[14] Shi K B, Li P, Yin S Z et al. Chromatic confocal microscopy using supercontinuum light[J]. Optics Express, 12, 2096-2101(2004).
[15] Chen X G, Nakamura T, Shimizu Y et al. A chromatic confocal probe with a mode-locked femtosecond laser source[J]. Optics Laser Technology, 103, 359-366(2018).
[16] Chen C, Sato R, Shimizu Y et al. A method for expansion of Z-directional measurement range in a mode-locked femtosecond laser chromatic confocal probe[J]. Applied Sciences, 9, 454-468(2019).
[17] Matsukuma H, Sato R, Shimizu Y et al. Measurement range expansion of chromatic confocal probe with supercontinuum light source[J]. International Journal of Automation Technology, 15, 529-536(2021).
[18] Csőke L T, Kautny S, Domján L et al. Development and validation of a surface profiling system for end of line monitoring of microstructured elastomer seals based on chromatic confocal microscopy[J]. Precision Engineering, 77, 365-374(2022).
[19] Novak J, Miks A. Hyperchromats with linear dependence of longitudinal chromatic aberration on wavelength[J]. Optik, 116, 165-168(2005).
[20] Zhang Z L, Lu R S. Initial structure of dispersion objective for chromatic confocal sensor based on doublet lens[J]. Optics and Lasers in Engineering, 139, 106424(2021).
[21] Chen C, Leach R, Wang J et al. Two-dimensional spectral signal model for chromatic confocal microscopy[J]. Optics Express, 29, 7179-7196(2021).
[22] Förster E, Stumpf D, Werner L et al. Hyperchromatic lens doublets with an extremely small equivalent Abbe number employing diffractive elements and refractive materials with exceptional dispersion properties[J]. Journal of the Optical Society of America A, 39, 1992-2000(2022).
[23] Claus D, Nizami M R. Influence of aberrations and roughness on the chromatic confocal signal based on experiments and wave-optical modeling[J]. Surface Topography: Metrology and Properties, 8, 025031(2020).
[24] Wu Y Q. Development of spectral confocal displacement measurement system[D], 43-44(2022).
[25] Liu R X. Research on optical technology of line spectrum confocal 3D measurement with axial dispersion[D], 35-36(2021).
[26] Ju M Q. Optimal design and data processing method of chromatic confocal line-scan measuring[D], 41-42(2021).
[27] Yang J. Research and design of line scanning chromatic confocal optical system[D](2021).
[28] Liu W. Research on data processing and calibration algorithm based on line scanning chromatic confocal measurement system[D](2021).
[29] Huang T T, Yang J, Ma T. Design of a line-scanning dispersive objective lens for chromatic confocal displacement sensor[J]. Proceedings of SPIE, 12071, 120710S(2021).
[30] Chen H R, Chou Y F, Yang F S et al. Galvo-scanning chromatic confocal microscopy for high-speed 3-D surface measurement[C], 497(2022).
[31] Sharma G, Singh K. Ultralong imaging range chromatic confocal microscopy[J]. Advanced Photonics Research, 4, 2200116(2023).
[32] Zhang Z Q. Research on the measurement method of line-scan chromatic confocal microscopy[D], 56-57(2021).
[33] Duocastella M, Vicidomini G, Diaspro A. Simultaneous multiplane confocal microscopy using acoustic tunable lenses[J]. Optics Express, 22, 19293-19301(2014).
[34] Zhu H. Research on signal processing and calibration of spectral confocal displacement sensor[D], 57-59(2019).
[35] Chen C, Wang J, Liu X J et al. Influence of sample surface height for evaluation of peak extraction algorithms in confocal microscopy[J]. Applied Optics, 57, 6516-6526(2018).
[36] Luo D, Kuang C F, Liu X. Fiber-based chromatic confocal microscope with Gaussian fitting method[J]. Optics Laser Technology, 44, 788-793(2012).
[37] Chen C, Wang J, Leach R et al. Corrected parabolic fitting for height extraction in confocal microscopy[J]. Optics Express, 27, 3682-3697(2019).
[38] Chen C, Yang W J, Wang J et al. Accurate and efficient height extraction in chromatic confocal microscopy using corrected fitting of the differential signal[J]. Precision Engineering, 56, 447-454(2019).
[39] Ruprecht A K, Wiesendanger T F, Tiziani H J. Signal evaluation for high-speed confocal measurements[J]. Applied Optics, 41, 7410-7415(2002).
[40] Bai J, Li X H, Wang X H et al. Chromatic confocal displacement sensor with optimized dispersion probe and modified centroid peak extraction algorithm[J]. Sensors, 19, 3592-3604(2019).
[41] Chen C, Chai C C, Liu X J et al. Asymmetry robust centroid localization in confocal microscopy[J]. Optics Letters, 47, 1933-1936(2022).
[42] Wang J Y, Liu T, Tang X F et al. Fiber-coupled chromatic confocal 3D measurement system and comparative study of spectral data processing algorithms[J]. Acta Photonica Sinica, 50, 1112001(2021).
[43] Li J F, Zhao Y L, Du H et al. Adaptive modal decomposition based overlapping-peaks extraction for thickness measurement in chromatic confocal microscopy[J]. Optics Express, 28, 36176-36187(2020).
[44] Liu L J, Ma H, Shi Z D et al. A real-time peak extraction algorithm for dynamic displacement measurement based on spectral confocal microscopy[J]. Journal of Physics: Conference Series, 2112, 012015(2021).
[45] Lu W L, Chen C, Zhu H et al. Fast and accurate mean-shift vector based wavelength extraction for chromatic confocal microscopy[J]. Measurement Science and Technology, 30, 115104(2019).
[46] Li C Y, Li G P, Liu J H et al. Analysis and research on spectral confocal displacement measurement method based on GRNN[J]. Acta Photonica Sinica, 51, 0330001(2022).
[47] Chen Y S, Chen L C. 3-D optical microscopy with a new synthetic SFF algorithm to reconstruct surfaces with various specular and diffusive reflectance[J]. The International Journal of Advanced Manufacturing Technology, 126, 2011-2023(2023).
[48] Zuo H H. Research on signal detection algorithm of spectral confocal displacement sensor based on equivalent substitution[D], 55-57(2021).
[49] Wang Y Y, Liu X, Hao X. Advances of confocal microscopy in three-dimensional surface topography measurement[J]. Laser & Optoelectronics Progress, 60, 0811007(2023).
[50] Yoo H W, Ito S, Schitter G. High speed laser scanning microscopy by iterative learning control of a galvanometer scanner[J]. Control Engineering Practice, 50, 12-21(2016).
[51] Ito S, Poik M, Csencsics E et al. High-speed scanning chromatic confocal sensor for 3-D imaging with modeling-free learning control[J]. Applied Optics, 59, 9234-9242(2020).
[52] Mac K D, Qureshi M M, Na M et al. Fast volumetric imaging with line-scan confocal microscopy by electrically tunable lens at resonant frequency[J]. Optics Express, 30, 19152-19164(2022).
[53] Chen H R, Chen L C. Full-field chromatic confocal microscopy for surface profilometry with sub-micrometer accuracy[J]. Optics and Lasers in Engineering, 161, 107384(2023).
[54] Hu Q L. On the compensation of dispersion of femtosecond laser acousto-optic scanning[D], 64-65(2018).
[55] Xu J P, Stroud R[M]. Acousto-optic devices: principles, design, and applications, 42-45(1992).
[56] Szulzycki K, Savaryn V, Grulkowski I. Rapid acousto-optic focus tuning for improvement of imaging performance in confocal microscopy[J]. Applied Optics, 57, C14-C18(2018).
[57] Bansal V, Patel S, Saggau P. High-speed addressable confocal microscopy for functional imaging of cellular activity[J]. Journal of Biomedical Optics, 11, 034003(2006).
[58] Reddy G D, Kelleher K, Fink R et al. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity[J]. Nature Neuroscience, 11, 713-720(2008).
[59] Akemann W, Léger J F, Ventalon C et al. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy[J]. Optics Express, 23, 28191-28205(2015).
[60] Konstantinou G, Kirkby P A, Evans G J et al. Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy[J]. Optics Express, 24, 6283-6299(2016).
[61] Han S M, Im K B, Park H et al. High speed slit-scanning confocal laser microscopy with an acousto-optic beam deflector and a line scan camera[J]. Proceedings of the SPIE, 5701, 164-171(2005).
[62] Im K B, Han S M, Park H et al. Simple high-speed confocal line-scanning microscope[J]. Optics Express, 13, 5151-5156(2005).
[63] Zhao J W, Zhang Y H, Wang F M et al. Line-scanning confocal microscopic imaging based on virtual structured modulation[J]. Chinese Optics, 14, 431-445(2021).
[64] Hu H, Mei S, Fan L M et al. A line-scanning chromatic confocal sensor for three-dimensional profile measurement on highly reflective materials[J]. The Review of Scientific Instruments, 92, 053707(2021).
[65] Yazaki A, Kim C, Chan J et al. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning[J]. Applied Physics Letters, 104, 251106(2014).
[66] Dong J T. Line-scanning laser scattering system for fast defect inspection of a large aperture surface[J]. Applied Optics, 56, 7089-7098(2017).
[67] Tao X, Zhang Z T, Zhang F et al. A novel and effective surface flaw inspection instrument for large-aperture optical elements[J]. IEEE Transactions on Instrumentation and Measurement, 64, 2530-2540(2015).
[68] Yuan G W. Theoretical analysis and design on optic-fiber bundle confocal microscopical system[D], 77-78(2008).
[69] Dong J T, Zhang T D, Yang L et al. Dark-field line confocal imaging with point confocality and extended line field for bulk defects detection[J]. Chinese Optics Letters, 21, 041203(2023).
[70] Hughes M, Yang G Z. High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking[J]. Biomedical Optics Express, 6, 1241-1252(2015).
[71] Zhang Y L, Yu Q, Wang C et al. Design and research of chromatic confocal system for parallel non-coaxial illumination based on optical fiber bundle[J]. Sensors, 22, 9596-9614(2022).
[72] Zhang Y L. Design and experiment study of parallel chromatic confocal measurement system based on optical fiber bundle[D], 48-49(2022).
[73] Lane P M, Dlugan A L, Richards-Kortum R et al. Fiber-optic confocal microscopy using a spatial light modulator[J]. Optics Letters, 25, 1780-1782(2000).
[74] Ma L, Yuan G W, Lai X J et al. Imaging of optic-fiber bundle confocal microscopy[J]. Journal of Nanchang University (Natural Science), 32, 431-434(2008).
[75] Vaishakh M. Confocality in image fiber bundle based microscope: a theoretical analysis[J]. Optik, 122, 1947-1949(2011).
[76] Tian W J, Ding Z H, Guo L R et al. A new method for full-field three-dimensional confocal detection[J]. Acta Optica Sinica, 18, 101-105(1998).
[77] Yin K. Research on parallel confocal imaging system with micro-lens array[D], 55-56(2013).
[78] Suresh S A, Vyas S, Chen W P et al. Multifocal confocal microscopy using a volume holographic lenslet array illuminator[J]. Optics Express, 30, 14910-14923(2022).
[79] Tiziani H J, Uhde H M. Three-dimensional analysis by a microlens-array confocal arrangement[J]. Applied Optics, 33, 567-572(1994).
[80] Choi W, Shin R, Lim J et al. Design methodology for a confocal imaging system using an objective microlens array with an increased working distance[J]. Scientific Reports, 6, 33278(2016).
[81] Shin R, Choi W, Kim T et al. Gigapixel confocal imaging using a massively parallel optical probe array with single directional infinite scanning[J]. Scientific Reports, 10, 7658(2020).
[82] Wang Y H. Research on the detecting technologies and system based on whole-field parallel confocal[D], 72-73(2004).
[83] Yu Q, Yu X F, Liu W W et al. Re-studies on parallel confocal measurement system with digital micromirror device[J]. Acta Optica Sinica, 31, 0523005(2011).
[84] Luo D, Taphanel M, Claus D et al. Area scanning method for 3D surface profilometry based on an adaptive confocal microscope[J]. Optics and Lasers in Engineering, 124, 105819(2020).
[85] Zhang Y, Yu Q, Zhang K et al. Parallel chromatic confocal measurement system based on digital micromirror device[J]. Optics and Precision Engineering, 28, 859-866(2020).
[86] Yu Q, Zhang Y L, Zhang Y et al. A novel chromatic confocal one-shot 3D measurement system based on DMD[J]. Measurement, 186, 110140(2021).
[87] Chen L C, Tan P J, Wu G W et al. High-speed chromatic confocal microscopy using multispectral sensors for sub-micrometer-precision microscopic surface profilometry[J]. Measurement: Sensors, 18, 100165(2021).
[88] Yu Q, Yu X F, Cui C C et al. Survey of parallel light source technology in parallel confocal measurement[J]. Chinese Optics, 6, 652-659(2013).