[1] Lixia Zhou, Joseph M Kahn, Kristofer S J Pister. Corne-cube retroreflectors based on structure-assisted assembly for free-space optical communication [J]. J Microelectromechanical System, 2003, 12(3): 233-242.
[2] B E Hinse. Optical truss retroreflector modeling for picometer laser metrology [C]. SPIE, 1993, 1947: 198-208.
[3] R A Chipman, J Shamir, H J Caulfield, et al.. Wavefront correcting properties of corner-cube arrays [J]. Appl Opt, 1988, 27(15): 3203-3209.
[4] H D Eckhardt. Simple model of corner reflector phenomena [J]. Appl Opt, 1971, 10(11): 1559-1566.
[5] W P Rowland. Retroreflective Material [P]. US Patent 3684348, 1972-08-15.
[6] Dong Huijun, Zhao Yang, Li Xiaoping, et al.. Elementary introduction to the current situation of retroreflective materials in China and the perspective of development trentd [J]. China Safety Science Journal, 2004, 14(2): 71-75.
[7] Dennis Vanderwerf. Applied Prismatic and Reflective Optics [M]. Bellingham: SPIE Press, 2010. 221.
[8] P schultz, B Cumby, J Heikenfeld. Investigation of five types of switchable retroreflector films for enhanced visible and infrared conspicuty applications [J]. Appl Opt, 2012, 51(17): 3744-3754.
[9] J Heikenfeld, P Drzaic, J S Yeo, et al.. A critical review of the present and future prospects for electronic paper [J]. J Soc Inf Disp, 2011, 19(2): 129-156.
[10] M Plett, W S Rabinovich, R Mahon, et al.. Free-space optical communication link across 16 kilometers over the Chesapeake Bay to a modulated retroreflector array [J]. Opt Eng, 2008, 47(4): 045001.
[11] F Mugele, J C Baret, Electrowetting from basics to applications [J]. J Phys Condens Matter, 2005, 17(28): R705-R774.
[12] M K Kilaru, B Cumby, J Heikenfeld. Advanced characterization of electrowetting retroreflectors [J]. Opt Express, 2009, 17(20): 17563-17569.
[13] S Kuiper, B H W Hendriks. Variable-focus liquid lens for miniature cameras [J]. Appl Phys Lett, 2004, 85(7): 1128-1130.
[14] R A Hayes, B J Feenstra. Video-speed electronic paper based on electrowetting [J]. Nature, 2003, 425(6956): 383-385.
[15] P G De Gennes, J Prost. The Physics of Liquid Crystals [M]. Oxford: Oxford University Press, 1995. 597.
[16] V G Chigrinov. Liquid Crystal Devices: Physics and Applications [M]. Boston: Artech House, 1999. 366.
[17] M K Kilaru, B Cumby, J Heikenfeld. Electrowetting retroreflectors: scalable and wide-spectrum modulation between corner cube and scattering reflection [J]. Appl Phys Lett, 2009, 94(4): 041108.
[18] B Sun, J Heikenfeld. Observation and optical implication of oil dewetting patterns in electrowetting displays [J]. J Micromech Microeng, 2008, 18(2): 025027.
[19] A Schultz, J Heikenfeld, H Kang, et al.. 10001 contrast ratio transmissive electrowetting displays [J]. J Disp Technol, 2011, 7(11): 583-585.
[20] K Zhou, J Heikenfelde, K A Dean, et al.. A full description of a simple and scalable fabrication process for electrowetting displays [J]. J Micromech Microeng, 2009, 19(6): 065029.
[21] J Fergason. Display Devices Utilizing Liquid Crystal Light Modulation [P]. US Patent 3731986, 1973-05-08.
[22] M Gu. The World of Liquid Crystal Displays [OL]. http//www.personal.kent.edu/~mgu/LCD/home.htm.
[23] P S Drzaic. Polymer dispersed nematic liquid crystal for large area displays and light valves [J]. J Appl Phys, 1986, 60(6): 2142-2148.
[24] J W Doane, A Golemme, J L West, et al.. Polymer dispersed liquid crystals for display application [J]. Mol Cryst Liq, 1988, 165(1): 511-532.
[25] G Spruce, R D Pringle. Polymer dispersed liquid crystal (PDLC) films [J]. J Electron Commun Eng, 1982, 4(2): 91-100.
[26] J L West. Extended Temperature Range Polymer Dispersed Liquid Crystal Light Shutters [P]. US Patent 5004323, 1991-04-02.27 N R Smith, D C Abeysinghe, J W Haus, et al.. Agile wide-angle beam steering with electrowetting microprisms [J]. Opt Express, 2006, 14(14): 6557-6563.
[27] M Schadt. Voltage-dependent optical activity of a twisted nematic liquid crystal [J]. Appl Phys Lett, 1971, 18(4): 127-128.