• Chinese Physics B
  • Vol. 29, Issue 8, (2020)
Zhi-Zhong Tan1,† and Zhen Tan2
Author Affiliations
  • 1Department of Physics, Nantong University, Nantong 22609, China
  • 2School of Information Science and Technology, Nantong University, Nantong 6019, China
  • show less
    DOI: 10.1088/1674-1056/ab96a7 Cite this Article
    Zhi-Zhong Tan, Zhen Tan. Electrical properties of m × n cylindrical network[J]. Chinese Physics B, 2020, 29(8): Copy Citation Text show less

    Abstract

    We consider the problem of electrical properties of an m × n cylindrical network with two arbitrary boundaries, which contains multiple topological network models such as the regular cylindrical network, cobweb network, globe network, and so on. We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method (a recursion-transform method based on node potentials). To illustrate the multiplicity of the results we give a series of special cases. Interestingly, the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies, which indicates that our research work creates new research ideas and techniques. As a byproduct of the study, a new mathematical identity is discovered in the comparative study.
    Rm×n(d1,d2)=r0n+1(|y1y2|(y1y2)2m)+rm|x1x2|+1m(n+1)i=1m1×j=1nCx1,j2+Cx2,j22Cx1,jCx2,jcos(y2y1)θir01(1cosθi)+r1(1cosϕj),(1)

    View in Article

    Cyky(i)=cos(yky)θi,θi=2iπ/m,(2)

    View in Article

    λi=h+1hcosθi+(h+1hcosθi)21,λ¯i=h+1hcosθi(h+1hcosθi)21,(3)

    View in Article

    Fk(i)=(λikλ¯ik)/(λiλ¯i),ΔFk(i)=Fk+1(i)Fk(i),(4)

    View in Article

    αs,x(i)=ΔFx(i)+(hs1)ΔFx1(i),hs=rs/r0,(5)

    View in Article

    βxxs(i)={βx,xs(i)=α1,x(i)α2,nxs(i),ifxxs,βxs,x(i)=α1,xs(i)α2,nx(i),ifxxs,(6)

    View in Article

    Gn(i)=Fn+1(i)+(h1+h22)Fn(i)+(h11)(h21)Fn1(i).(7)

    View in Article

    Um×n(x,y)J=x1xτmr+r02mi=1m1βx1x(i)Cy1y(i)βx2x(i)Cy2y(i)(1cosθi)Gn(i),(8)

    View in Article

    xτ={x1,0xx1}{x,x1xx2}{x2,x2xn},(9)

    View in Article

    Um×n(x,y)J=x2xτmr+r02mi=1m1βx1x(i)Cy1y(i)βx2x(i)Cy2y(i)(1cosθi)Gn(i),(10)

    View in Article

    Rm×n(d1,d2)=|x2x1|mr+r02mi=1m1β1,1(i)2β1,2(i)cos(yθi)+β2,2(i)(1cosθi)Gn(i),(11)

    View in Article

    Vk+1(0)=(2+2h)Vk(0)Vk1(0)hVk(m1)hVk(1),Vk+1(i)=(2+2h)Vk(i)Vk1(i)hVk(i1)hVk(i+1),(12)

    View in Article

    \boldsymbolVk+1=\boldsymbolBm\boldsymbolVk\boldsymbolVk1r\boldsymbolIkδk,x(δy,y1δy,y2),(13)

    View in Article

    \boldsymbolVk=[Vk(0),Vk(1),Vk(2),,Vk(m1)]T,(14)

    View in Article

    \boldsymbolIk=[J,J,J,,J]T,(15)

    View in Article

    \boldsymbolBm=(2+2hh00hh2(1+h)h0000h2(1+h)hh00h2+2h).(16)

    View in Article

    h1\boldsymbolV1=[\boldsymbolBm(2h1)\boldsymbolE]\boldsymbolV0,(17)

    View in Article

    h2\boldsymbolVn1=[\boldsymbolBm(2h2)\boldsymbolE]\boldsymbolVn,(18)

    View in Article

    ti=2(1+h)2hcosθi,(19)

    View in Article

    \boldsymbolPm\boldsymbolBm=diag{t0,t1,,tm1}\boldsymbolPm,(20)

    View in Article

    \boldsymbolXk=\boldsymbolPm\boldsymbolVkor\boldsymbolVk=(\boldsymbolPm)1\boldsymbolXk,(21)

    View in Article

    Pi=[g0,i,g1,i,g2,i,,gm1,i],(22)

    View in Article

    gk,i=exp(ikθi)andθi=2iπ/m,(i0),(23)

    View in Article

    Xk+1(i)=tiXk(i)Xk1(i)rJ(δx1,kgy1,iδx2,kgy2,i),(24)

    View in Article

    h1X1(i)=(ti+h12)X0(i),(25)

    View in Article

    h2Xn1(i)=(ti+h22)Xn(i).(26)

    View in Article

    Xk(i)=X1(i)FkX0(i)Fk1,0kx1,(27)

    View in Article

    Xx1+1(i)=tiXx1(i)Xx11(i)rJexp(iy1θi),(28)

    View in Article

    Xk(i)=Xx1+1(i)Fkx1Xx1(i)Fkx11,x1kx2,(29)

    View in Article

    Xx2+1(i)=tiXx2(i)Xx21(i)+rJexp(iy2θi),(30)

    View in Article

    Xk(i)=Xx2+1(i)Fkx2Xx2(i)Fkx21,x2kn,(31)

    View in Article

    Xk(i)=βkx1(i)exp(iy1θi)βkx2(i)exp(iy2θi)(ti2)Gn(i)rJ,(32)

    View in Article

    λ0=λ¯0=1andgk,0=exp(ikθ0)=1.(33)

    View in Article

    Fk(0)=k,ΔFk(0)=1,αs,x(0)=ΔFx(0)+(hs1)ΔFx1(0)=hs.(34)

    View in Article

    X1(0)=X0(0),Xn1(0)=Xn(0).(35)

    View in Article

    Xk(0)=X0(0),(0kx1),(36)

    View in Article

    Xx1+1(0)=2Xx1(0)Xx11(0)rJ,(37)

    View in Article

    Xk(0)=(kx1)Xx1+1(0)(kx11)Xx1(0),(x1kx2),(38)

    View in Article

    Xx2+1(0)=2Xx2(0)Xx21(0)+rJ,(39)

    View in Article

    Xk(0)=(kx2)Xx2+1(0)(kx21)Xx2(0),(x2kn).(40)

    View in Article

    Xk(0)=X0(0),0kx1,(41)

    View in Article

    Xk(0)=X0(0)+(x1k)rJ,x1kx2,(42)

    View in Article

    Xk(0)=X0(0)+(x1x2)rJ,x2kn.(43)

    View in Article

    (Xk(0)Xk(1)Xk(s))=(11111exp(iθ1)exp(i2θ1)exp(isθ1)1exp(iθs)exp(i2θs)exp(isθs))×(Vk(0)Vk(1)Vk(s)),(44)

    View in Article

    Xk(0)=i=0m1Vk(i).(45)

    View in Article

    i=0m1V0(i)=0X0(0)=0.(46)

    View in Article

    Xk(0)=(x1xτ)rJ,0kn,(47)

    View in Article

    i=0m1Vn(i)=0Xn(0)=0,X0(0)=(x2x1)rJ.(48)

    View in Article

    Xk(0)=(x2xτ)rJ,0kn,(49)

    View in Article

    (Vk(0)Vk(1)Vk(s))=1m(1111exp(iθ1)exp(isθs)1exp(isθ1)exp(isθs))×(Xk(0)Xk(1)Xk(s)),(50)

    View in Article

    Vk(y)=1m(Xk(0)+i=1m1Xk(i)exp(iyθi)).(51)

    View in Article

    Um×n(x,y)J=x1xτmr+r0mi=1m1βx1x(i)Cy1y(i)βx2x(i)Cy2y(i)2(1cosθi)Gn(i)+ir0mi=1m1βx1x(i)sin[(y1y)θi]βx2x(i)sin[(y2y)θi]2(1cosθi)Gn(i).(52)

    View in Article

    Rm×n(d1,d2)=[U(x1,y1)U(x2,y2)]1J.(53)

    View in Article

    Um×n(x1,y1)J=r02mi=1m1βx1,x1(i)βx1,x2(i)cos(y2y1)θi(1cosθi)Gn(i),(54)

    View in Article

    Um×n(x2,y2)J=x1x2mr+r02m×i=1m1βx1,x2(i)cos(y2y1)θiβx2,x2(i)(1cosθi)Gn(i).(55)

    View in Article

    Um×n(x1,y1)JUm×n(x2,y2)J=x2x1mr+r0mi=1m1(βx1,x1(i)βx1,x2(i)cos(y2y1)θi2(1cosθi)Gn(i)βx1,x2(i)cos(y2y1)θiβx2,x2(i)2(1cosθi)Gn(i)).(56)

    View in Article

    Rm×n(d1,d2)=Um×n(x1,y1)JUm×n(x2,y2)J=x2x1mr+r02mi=1mβx1,x1(i)2βx1,x2(i)cos(y2y1)θi+βx2,x2(i)(1cosθi)Gn(i).(57)

    View in Article

    U(x,y)J=x1xτmr+r02mi=1m1βx1x(i)Cy1y(i)βx2x(i)Cy2y(i)(1cosθi)Fn+1(i),(58)

    View in Article

    Um×n(x,y)J=r02mi=1m1Cy1y(i)Cy2y(i)(1cosθi)Gn(i)βx1x(i),(59)

    View in Article

    Um×(x,y)J=r2mi=1m1Cy1y(i)Cy2y(i)(1+hhcosθi)21λ¯i|x1x|.(60)

    View in Article

    U(x,y)J=x1xτmr+rmi=1m1βx1x(i)Cy1y(i)βx2x(i)Cy2y(i)ΔFn(i)+(h11)ΔFn1(i),(61)

    View in Article

    U(x,y)J=xmr+r1hmi=1m1Fnx(i)cos(y1y)θiΔFn(i)+(h11)ΔFn1(i).(62)

    View in Article

    U(x,y)J=x2xτmr+rmi=1m1βx1x(i)Cy1y(i)βx2x(i)Cy2y(i)ΔFn(i)+(h11)ΔFn1(i),(63)

    View in Article

    U(x,y)J=nxmr+r1hmi=1m1Fnx(i)cos(y1y)θiΔFn(i)+(h11)ΔFn1(i).(64)

    View in Article

    Um×n(x,y)J=x1xτmr+rmi=1m1βx1x(i)Cy1y(i)βx2x(i)Cy2y(i)Fn(i),(65)

    View in Article

    U(x,y)J=xmr.(66)

    View in Article

    U(x,y)J=xmr.(67)

    View in Article

    λ1=λ3=1+h+(1+h)21,λ2=1+2h+(1+2h)21.(68)

    View in Article

    U×n(x,y)J=x1xτ4r+r0βx1x(1)Cy(1)βx2x(1)Cy2y(1)4Gn(1)+r0βx1x(2)Cy(2)βx2x(2)Cy2y(2)16Gn(2),(69)

    View in Article

    U×n(x,y)J=r1Cy(1)C1y(1)4Gn(1)α2,nx(1)+r1Cy(2)C1y(2)16Gn(2)α2,nx(2),(70)

    View in Article

    U×n(Ax)J=r1α2,nx(1)4Gn(1)+r1α2,nx(2)8Gn(2),(71)

    View in Article

    U×n(Bx)=U×n(Ax),(72)

    View in Article

    U×n(Cx)J=r1α2,nx(1)4Gn(1)+r1α2,nx(2)8Gn(2),(73)

    View in Article

    U×n(Dx)=U×n(Cx).(74)

    View in Article

    U×n(x,y)J=r1Cy(1)C2y(1)4Gn(1)α2,nx(1)+r1Cy(2)C2y(2)16Gn(2)α2,nx(2),(75)

    View in Article

    U×n(Ax)J=r1α2,nx(1)2Gn(1),(76)

    View in Article

    U×n(Bx)=U×n(Dx)=0,(77)

    View in Article

    U×n(Cx)=U×n(Ax).(78)

    View in Article

    U×n(x,y)J=x4r+r0h1α2,nx(1)h2α1,x(1)4Gn(1)Cy(1)+r0h1α2,nx(2)h2α1,x(2)16Gn(2)Cy(2),(79)

    View in Article

    U×n(Ax)J=x4r+r0h1α2,nx(1)h2α1,x(1)4Gn(1)+r0h1α2,nx(2)h2α1,x(2)16Gn(2),(80)

    View in Article

    U×n(Bx)J=U×n(Dx)J=x4rr0h1α2,nx(2)h2α1,x(2)16Gn(2),(81)

    View in Article

    U×n(Cx)J=x4rr0h1α2,nx(1)h2α1,x(1)4Gn(1)+r0h1α2,nx(2)h2α1,x(2)16Gn(2).(82)

    View in Article

    U×n(x,y)J=x4r+r0h1α2,nx(1)Cy(1)h2α1,x(1)C1y(1)4Gn(1)+r0h1α2,nx(2)Cy(2)h2α1,x(2)C1y(2)16Gn(2),(83)

    View in Article

    U×n(Ax)J=x4r+r1α2,nx(1)4Gn(1)+r0h1α2,nx(2)+h2α1,x(2)16Gn(2),(84)

    View in Article

    U×n(Bx)J=x4rr2α1,x(1)4Gn(1)r0h1α2,nx(2)+h2α1,x(2)16Gn(2),(85)

    View in Article

    U×n(Cx)J=x4rr1α2,nx(1)4Gn(1)+r0h1α2,nx(2)+h2α1,x(2)16Gn(2),(86)

    View in Article

    U×n(Dx)J=x4r+r2α1,x(1)4Gn(1)r0h1α2,nx(2)+h2α1,x(2)16Gn(2).(87)

    View in Article

    U×n(x,y)J=x4r+r0h1α2,nx(1)Cy(1)h2α1,x(1)C2y(1)4Gn(1)+r0h1α2,nx(2)Cy(2)h2α1,x(2)C2y(2)16Gn(2),(88)

    View in Article

    U×n(Ax)J=x4r+r0h1α2,nx(1)+h2α1,x(1)4Gn(1)+r0h1α2,nx(2)h2α1,x(2)16Gn(2),(89)

    View in Article

    U×n(Bx)J=U×n(Dx)J=x4rr0h1α2,nx(2)h2α1,x(2)16Gn(2),(90)

    View in Article

    U×n(Cx)J=x4rr0h1α2,nx(1)+h2α1,x(1)4Gn(1)+r0h1α2,nx(2)h2α1,x(2)16Gn(2).(91)

    View in Article

    Rm×n(d1,d2)=|x2x1|mr+r02mi=1m1β1,1(i)2β1,2(i)cos(yθi)+β2,2(i)(1cosθi)Fn+1(i),(92)

    View in Article

    Rm×n(d1,d2)=|x2x1|mr+r02mi=1m1β1,1(i)2β1,2(i)cos(yθi)+β2,2(i)(1cosθi)[Fn+1(i)+(h21)Fn(i)],(93)

    View in Article

    Rm×n(d1,d2)=|x2x1|mr+rmi=1m1β1,1(i)2β1,2(i)cos(yθi)+β2,2(i)ΔFn(i)+(h11)ΔFn1(i),(94)

    View in Article

    Rm×n(d1,d2)=|x2x1|mr+rmi=1m1β1,1(i)2β1,2(i)cos(yθi)+β2,2(i)ΔFn(i),(95)

    View in Article

    Rm×n(d1,d2)=|x2x1|mr+rmi=1m1Fx1(i)Fnx1(i)2Fx1(i)Fnx2(i)cos(yθi)+Fx2(i)Fnx2(i)Fn(i),(96)

    View in Article

    Rm×n({0,0},{n,y})=nmr+r02mi=1m1h1α2,n(i)+h2α1,n(i)2h1h2cos(yθi)(1cosθi)Gn(i).(97)

    View in Article

    Rm×n({0,0},{n,y})=nmr+r0mi=1m1ΔFn(i)cos(yθi)(1cosθi)Fn+1(i).(98)

    View in Article

    Rm×n({0,0},{n,y})=nmr+rmi=1m1Fn(i)ΔFn(i).(99)

    View in Article

    Rm×n({x1,0},{x2,0})=|x2x1|mr+r02mi=1m1β1,1(i)2β1,2(i)+β2,2(i)(1cosθi)Gn(i).(100)

    View in Article

    λ1=λ2=1+32h+(1+32h)21.(101)

    View in Article

    RΔ×n(Ax1,Pk)=|kx1|3r+2r09(β1,1(1)2β1,2(1)cos(2πy/3)+β2,2(1)Gn(1)),(102)

    View in Article

    RΔ×n(Ax1,Ax2)=|x2x1|3r+2r09(βx1,x1(1)2βx1,x2(1)+βx2,x2(1)Gn(1)),(103)

    View in Article

    RΔ×n(A0,Ax)=x3r+2r09(ΔFn(1)2ΔFnx(1)+ΔFx(1)ΔFnx(1)Fn+1(1)),(104)

    View in Article

    RΔ×n(A0,An)=n3r+4r09(ΔFn(1)1Fn+1(1)).(105)

    View in Article

    RΔ×n(Ax1,Bk)=RΔ×n(Ax1,Ck)=|kx1|3r+2r09(β1,1(1)+β1,2(1)+β2,2(1)Gn(1)).(106)

    View in Article

    RΔ×n(A0,Bk)=RΔ×n(A0,Ck)=k3r+2r09(ΔFn(1)+ΔFnk(1)+ΔFk(1)ΔFnk(1)Fn+1(1)),(107)

    View in Article

    RΔ×n(A0,Bn)=RΔ×n(A0,Cn)=n3r+2r02ΔFn(1)+19Fn+1(1).(108)

    View in Article

    RΔ×n(Ak,Bk)=RΔ×n(Ak,Ck)=2r0ΔFk(1)ΔFnk(1)3Fn+1(1).(109)

    View in Article

    λ1=λ3=1+h+h2+2h,λ2=1+2h+2h2+h.(110)

    View in Article

    R×n(Ax1,Px2)=|x2x1|4r+r0β1,1(1)2β1,2(1)cos(yπ/2)+β2,2(1)4Gn(1)+r0β1,1(2)2β1,2(2)cos(yπ)+β2,2(2)16Gn(2),(111)

    View in Article

    R×n(A0,Pk)=k4r+r0h1α2,n2h1α2,nk(1)cos(yπ/2)+α1,k(1)α2,nk(1)4Gn(1)+r0h1α2,n(2)2h1α2,nk(2)cos(yπ)+α1,k(2)α2,nk(2)16Gn(2),(112)

    View in Article

    R×n(A0,Pn)=n4r+r0h1α2,n2h1h2cos(yπ/2)+h2α1,n(1)4Gn(1)+r0h1α2,n(2)2h1h2cos(yπ)+h2α1,n(2)16Gn(2).(113)

    View in Article

    R×n(Ax1,Px1)=r0β1,1(1)[1cos(yπ/2)]2Gn(1)+r0β1,1(2)[1cos(yπ)]8Gn(2),(114)

    View in Article

    R×n(Ax1,Px1)=r0ΔFx1(1)ΔFnx1(1)[1cos(yπ/2)]2Fn+1(1)+r0ΔFx1(2)ΔFnx1(2)[1cos(yπ)]8Fn+1(2).(115)

    View in Article

    R×n(A0,Ak)=k4r+r0h1α2,n(1)2h1α2,nk(1)+α1,k(1)α2,nk(1)4Gn(1)+r0h1α2,n(2)2h1α2,nk(2)+α1,k(2)α2,nk(2)16Gn(2).(116)

    View in Article

    R×n(A0,An)=n4r+r0ΔFn(1)12Fn+1(1)+r0ΔFn(2)18Fn+1(2),(117)

    View in Article

    R×n(A0,Bk)=k4r+r0h1α2,n(1)+α1,k(1)α2,nk(1)4Gn(1)+r0h1α2,n(2)+2h1α2,nk(2)+α1,k(2)α2,nk(2)16Gn(2),(118)

    View in Article

    R×n(A0,Bn)=n4r+r0ΔFn(1)2Fn+1(1)+r0ΔFn(2)+18Fn+1(2).(119)

    View in Article

    R×n(A0,Ck)=k4r+r0h1α2,n(1)+2h1α2,nk(1)+α1,k(1)α2,nk(1)4Gn(1)+r0h1α2,n(2)2h1α2,nk(2)+α1,k(2)α2,nk(2)16Gn(2).(120)

    View in Article

    R×n(A0,Cn)=n4r+r0ΔFn(1)+12Fn+1(1)+r0ΔFn(2)18Fn+1(2).(121)

    View in Article

    R(d1,d2)=|x2x1|4r+β1,1(1)2β1,2(1)cos(yπ/2)+β2,2(1)2F3(1)r+β1,1(2)2β1,2(2)cos(yπ)+β2,2(2)4F3(2)r,(122)

    View in Article

    R(A0,A3)=34r,(123)

    View in Article

    R(A0,Bk)=14r+(h+1)r(2h+1)(2h+3)+(2h+1)r2(4h+1)(4h+3),(124)

    View in Article

    R(A0,Ck)=12r+(h+1)r(2h+1)(2h+3)+(2h+1)r2(4h+1)(4h+3),(125)

    View in Article

    R(B0,B1)=R(B0,B3)=(h+1)r(2h+1)(2h+3)+(2h+1)r(4h+1)(4h+3),(126)

    View in Article

    R(B0,B2)=2(h+1)r(2h+1)(2h+3),(127)

    View in Article

    R(B0,Ck)=14r+2(h+1)cos(kπ/2)(2h+1)(2h+3)r+2(2h+1)cos(kπ)2(4h+1)(4h+3)r,(128)

    View in Article

    1mi=1m1j=1nCx1,j2+Cx2,j22Cx1,jCx2,jcos(yθi)(1cosθi)+h1(1cosϕj)=(y2my)+n+12mi=1m1β1,1(i)2β1,2(i)cos(yθi)+β2,2(i)(1cosθi)Fn+1(i),(129)

    View in Article

    λi=1+hhcosθi+(1+hhcosθi)21,λ¯i=1+hhcosθi(1+hhcosθi)21.(130)

    View in Article

    2n+1i=1m1j=1n[cos(x1+1/2)ϕjcos(x2+1/2)ϕj]2(1cosθi)+h1(1cosϕj)=i=1m1β1,1(i)2β1,2(i)+β2,2(i)(1cosθi)Fn+1(i).(131)

    View in Article

    1n+1j=1n[cos(x1+1/2)ϕjcos(x2+1/2)ϕj]22+h1(1cosϕj)=β1,1(1)2β1,2(1)+β2,2(1)4Fn+1(1),(132)

    View in Article

    λ1=1+2h+2h(1+h),λ¯1=1+2h2h(1+h).(133)

    View in Article

    2mi=1m1j=1ncos2[(x+1/2)ϕj](1cosyθi)(1cosθi)+h1(1cosϕj)=(y2my)+n+1mi=1m1ΔFx(i)ΔFnx(i)Fn+1(i)(1cos(yθi)1cosθi),(134)

    View in Article

    1n+1j=1n(Cx1,j+Cx2,j)22+h1(1cosϕj)=β1,1(1)+2β1,2(1)+β2,2(1)4Fn+1(1)1n+1,(135)

    View in Article

    i=1m11cos(yiπ/m)1cos(iπ/m)=y(my).(136)

    View in Article

    Zhi-Zhong Tan, Zhen Tan. Electrical properties of m × n cylindrical network[J]. Chinese Physics B, 2020, 29(8):
    Download Citation