• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 4, 726 (2022)
Fang-Kun TIAN1,2, Li-Kun AI1,*, Guo-Yu SUN3, An-Huai XU1..., Hua HUANG1, Qian GONG1 and Ming QI1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Terahertz Solid State Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China
  • 2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • 3College of Physics and Electronic Engineering,Hainan Normal University,Haikou 571158,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.04.011 Cite this Article
    Fang-Kun TIAN, Li-Kun AI, Guo-Yu SUN, An-Huai XU, Hua HUANG, Qian GONG, Ming QI. Influence of InyAl1-yAs graded buffer layer on properties of InP-HEMT materials[J]. Journal of Infrared and Millimeter Waves, 2022, 41(4): 726 Copy Citation Text show less
    Hall mobility and electron concentrations in different channel indium contents
    Fig. 1. Hall mobility and electron concentrations in different channel indium contents
    HRXRD(004)ω-2θ scans for InAlAs graded buffer layer with different thickness
    Fig. 2. HRXRD(004)ω-2θ scans for InAlAs graded buffer layer with different thickness
    The surface morphology of the InAlAs graded buffer layer with different thickness
    Fig. 3. The surface morphology of the InAlAs graded buffer layer with different thickness
    The surface morphology of the InGaAs channel with different InAlAs graded buffer layer thickness
    Fig. 4. The surface morphology of the InGaAs channel with different InAlAs graded buffer layer thickness
    Hall mobility and electron concentrations in different InAlAs graded buffer layer thickness
    Fig. 5. Hall mobility and electron concentrations in different InAlAs graded buffer layer thickness
    The surface morphology of the InAlAs graded buffer layer with different aluminum contents
    Fig. 6. The surface morphology of the InAlAs graded buffer layer with different aluminum contents
    The surface morphology of the InGaAs channel with different aluminum contents
    Fig. 7. The surface morphology of the InGaAs channel with different aluminum contents
    TEM energy spectrum image of InP-HEMT with InAlAs graded buffer layer
    Fig. 8. TEM energy spectrum image of InP-HEMT with InAlAs graded buffer layer
    TEM Cross-sectional image of InP-HEMT with InAlAs graded buffer layer
    Fig. 9. TEM Cross-sectional image of InP-HEMT with InAlAs graded buffer layer
    Hall mobility and electron concentrations in different InAlAs graded buffer layer aluminum contents
    Fig. 10. Hall mobility and electron concentrations in different InAlAs graded buffer layer aluminum contents
    LayerMaterialThickness /nm
    S.I InP Substrate
    Contact layerIn0.65Ga0.35As25
    Contact layerIn0.52Al0.48As15
    Etch stop layerInP4
    Barrier layerIn0.52Al0.48As8
    Doped layerSi concentration(2-4)×1012 cm-2
    Spacer layerIn0.52Al0.48As3
    Channel layerIn0.66Ga0.34As10
    Graded buffer layerInyAl1-yAsz(0,10,30,50,70,90)
    Buffer layerIn0.52Al0.48As500-z
    Table 1. InP-HEMT structure
    Thincness/nm01030507090
    FWHM/s-131.220739.7188.9168.3
    µ/cm2(vs)-18 0208 0308 2608 5708 2307 710
    Ns/1012 cm-22.7353.2423.2552.72.7563.199
    InAlAs RMS/nm0.1170.2410.3760.1540.1950.337
    InAlAs+InGaAs RMS/nm0.1850.2830.2750.170.2230.23
    Table 2. Properties of InAlAs graded buffer layer with different thickness

    Graded InAlAs

    aluminum contents/(%)

    4848→4348→3848→34

    Graded InAlAs

    indium contents/(%)

    5252→5752→6252→66
    µ/cm2(vs)-18020807085707800
    Ns/1012cm-22.7353.4852.72.987

    InAlAs

    RMS/nm

    0.1170.1970.1540.287
    InAlAs+InGaAs RMS/nm0.1850.2930.170.217
    Table 3. Properties of InAlAs graded buffer layer with different aluminum contents
    Fang-Kun TIAN, Li-Kun AI, Guo-Yu SUN, An-Huai XU, Hua HUANG, Qian GONG, Ming QI. Influence of InyAl1-yAs graded buffer layer on properties of InP-HEMT materials[J]. Journal of Infrared and Millimeter Waves, 2022, 41(4): 726
    Download Citation