Guanghong Tan, Jin Hou, Yanpeng Han, Shuo Luo. Low-Parameter Real-Time Image Segmentation Algorithm Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091003

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 56, Issue 9, 091003 (2019)

Fig. 1. Convolution kernel. (a) Classical convolution kernel; (b) dilated convolution kernel Rrate=2; (c) dilated convolution kernel Rrate=3

Fig. 2. Atrous-Fire modular structure

Fig. 3. Dilated convolution kernel and initial characteristic graphs. (a) Sawtooth structure convolution kernel; (b) no grid feature graph; (c) grid feature graph

Fig. 4. Network structure of Atrous-squeezeseg

Fig. 5. Training loss value curves

Fig. 6. Validation loss value curves

Fig. 7. Effect comparison of ADE20K. (a) Original images; (b) ground truth; (c) proposed algorithm; (d) Squeezeseg+FCN; (e) VGG16+FCN; (f) SqueezeNet+FCN; (g) without dilated; (h) without BN

Fig. 8. Effect comparison of PASCAL VOC. (a) Original images; (b) ground truth; (c) proposed algorithm; (d) Squeezeseg+FCN; (e) VGG16+FCN; (f) SqueezeNet+FCN; (g) without dilated; (h) without BN
|
Table 1. Encoder parameters
|
Table 2. Number of parameters of different semantic segmentation models and MIU
|
Table 3. PA and FPS of model in different devices

Set citation alerts for the article
Please enter your email address