[1] Zhang X. Research on aircraft target detection technology in remote sensing image based on YOLO algorithm[D], 1-2(2021).
[2] Zhang L, Zhang Y S, Yu Y et al. Research progress and prospect of target detection in inclined bounding box of remote sensing images[J]. National Remote Sensing Bulletin, 26, 1723-1743(2022).
[3] Nie G T, Huang H. A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 47, 1749-1768(2021).
[4] Sha M M, Li Y, Li A. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. National Remote Sensing Bulletin, 26, 1624-1635(2022).
[5] Zhao J Q, Zhang D, Zhou Y et al. Interpretable object detection method for remote sensing image based on deep reinforcement learning[J]. Pattern Recognition and Artificial Intelligence, 34, 777-786(2021).
[6] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[7] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[8] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[9] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
[10] Liu L, Ouyang W L, Wang X G et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 128, 261-318(2020).
[11] Lin Y D, He H J, Yin Z K et al. Rotation-invariant object detection in remote sensing images based on radial-gradient angle[J]. IEEE Geoscience and Remote Sensing Letters, 12, 746-750(2015).
[12] Grabner H, Nguyen T T, Gruber B et al. On-line boosting-based car detection from aerial images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 63, 382-396(2008).
[13] Dong Y F, Zhang C T, Wang P et al. Airplane detection of optical remote sensing images based on deep learning[J]. Laser & Optoelectronics Progress, 57, 041007(2020).
[14] Xiao Z J, Yang Y Y, Kong X X. Object detection method based on improved YOLOv4 network for remote sensing images[J]. Laser & Optoelectronics Progress, 60, 0628009(2023).
[15] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).
[16] Girshick R. Fast R-CNN[C], 1440-1448(2015).
[17] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[18] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).
[19] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).
[20] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[C], 2999-3007(2017).
[21] Duan K W, Bai S, Xie L X et al. CenterNet: keypoint triplets for object detection[C], 6568-6577(2019).
[22] Law H, Deng J. CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 128, 642-656(2020).
[23] Tian Z, Shen C H, Chen H et al. FCOS: fully convolutional one-stage object detection[C], 9626-9635(2019).
[24] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C], 2980-2988(2017).
[25] Russakovsky O, Deng J, Su H et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 115, 211-252(2015).
[26] Gao M T, Sun H, Tang Y Q et al. Fingerprint second-order minutiae detection method based on improved YOLOv5[J]. Laser & Optoelectronics Progress, 60, 1010006(2023).
[27] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8693, 740-755(2014).
[28] Gao S H, Cheng M M, Zhao K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[29] Xie S N, Girshick R, Dollár P et al. Aggregated residual transformations for deep neural networks[C], 5987-5995(2017).