Ming Zhang, Xiaoqi Lü, Liang Wu, Dahua Yu. Multiplicative Denoising Method Based on Deep Residual Learning[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031004

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 55, Issue 3, 031004 (2018)

Fig. 1. Architecture of residual learning

Fig. 2. Architecture of the CNN

Fig. 3. Test images used in the experiment

Fig. 4. Results of different methods for test images under the same noise level. (a) Noise images; (b) Lee method; (c) Frost method; (d) BM3D method; (e) NL method; (f) CNN method

Fig. 5. Detail comparison of different denoising methods.(a) Lee method; (b) Frost method; (c) BM3D method; (d) NL method; (e) CNN method

Fig. 6. Denoising results of CNN method under different noise levels. (a) σ2=0.02; (b) σ2=0.04;(c) σ2=0.06; (d) σ2=0.08; (e) σ2=0.1

Fig. 7. (a) PSNR and (b) SSIM of different denoising methods versus noise level
|
Table 1. PSNR of different methods for test images under the same noise leveldB
|
Table 2. SSIM of different methods for test images under the same noise level
|
Table 3. PSNR of different methods under different noise levelsdB
|
Table 4. SSIM of different methods under different noise levels

Set citation alerts for the article
Please enter your email address