• Laser & Optoelectronics Progress
  • Vol. 52, Issue 8, 80003 (2015)
Liu Jing1,*, Shen Jingling2, and Zhang Cunlin1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.080003 Cite this Article Set citation alerts
    Liu Jing, Shen Jingling, Zhang Cunlin. Progress of Terahertz Polymer Waveguides[J]. Laser & Optoelectronics Progress, 2015, 52(8): 80003 Copy Citation Text show less
    References

    [1] Mu Kaijun. Terahertz Spectroscopy of Explosives[D]. Beijing: Capital Normal University, 2008.

    [2] Hu B B, Nuss M C. Imaging with terahertz waves[J]. Opt Lett, 1995, 20(16): 1716-1718.

    [3] Chen H T, Kersting R, Cho G C. Terahertz imaging with a nanometer resolution[J]. Appl Phys Lett, 2003, 83(15): 3009-3011.

    [4] Anna Mazhorova, Andrey Markov, Andy Ng, et al.. Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber[J]. Opt Express, 2012, 20(5): 5344-5355.

    [5] Piesiewcz R, Kleine-Ostmann T, Krumbholz N, et al.. Short-range ultra-broadband terahertz communications: concepts and perspectives[J]. IEEE Antennas and Propagation Mag, 2007, 49(6): 24-39.

    [6] Shen Y C, Lo T, Taday P F, et al.. Detection and identification of explosives using terahertz pulsed spectroscopic imaging[J]. Appl Phys Lett, 2005, 86(24): 241116.

    [7] Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Opt Lett, 2001, 26(11): 846-848.

    [8] Zhan Hui, Mendis Rajind, Mittleman Daniel M. Characterization of the terahertz near-field output of parallel-plate waveguides[J]. J Opt Soc Am B, 2011, 28(3): 558-566.

    [9] Gallot G, Jamison S P, McGowan R W, et al..Terahertz waveguides[J]. J Opt Soc Am B, 2000, 17(5): 851-863.

    [10] Harrington J A, George R, Pedersen P, et al.. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation[J]. Opt Express, 2004, 12(21): 5263-5268.

    [11] Ito T, Matsuura Y, Miyagi M, et al.. Flexible terahertz fiber optics with low bend-induced losses[J]. J Opt Soc Am B, 2007, 24(5): 1230-1235.

    [12] Lu Jen-Tang, Lai Chih-Hsien, Tseng Tzu-Fang, et al.. Terahertz polarization-sensitive rectangular pipe waveguides[J]. Opt Express, 2011, 19(22): 21532-21539.

    [13] Yu R J, Zhang B, Zhang Y Q, et al.. Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding[J]. IEEE Photon Technol Lett, 2007, 19(12): 910-912.

    [14] Setti V, Vincetti L, Argyros A. Flexible tube lattice fibers for terahertz applications[J]. Opt Express, 2013, 21(3): 3388-3399.

    [15] Jin Y S, Kim G J, Jeon S G. Terahertz dielectric properties of polymers[J]. Journal of the Korean Physical Society, 2006, 49(2): 513-517.

    [16] Balakrishnan J, Fischer B M, Abbott D. Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy[J]. Appl Opt, 2009, 48(12): 2262-2266.

    [17] Fischer B M, Hoffmann M, Helm H. Broadband THz Time-Domain Spectroscopy of Biomolecules[D]. Freiburg: University of Freiburg, 2005.

    [18] Harrington J A, George R, Pedersen P, et al.. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation[J]. Opt Express, 2004, 12(21): 5263-5268.

    [19] Hidaka T, Minamide H, Ito H, et al.. Ferroelectric PVDF cladding terahertz waveguide[J]. Journal of Lightwave Technology, 2005, 23(8): 2469.

    [20] Skorobogatiy M, Dupuis A. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance[J]. Appl Phys Lett, 2007, 90(11): 113514.

    [21] Bowden B, Harrington J A, Mitrofanov O. Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation[J]. Opt Lett, 2007, 32(20): 2945-2947.

    [22] Matsuura Y, Takeda E. Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy[J]. J Opt Soc Am B, 2008, 25(12): 1949-1954.

    [23] Ung B, Dupuis A, Stoeffler K, et al.. High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss[J]. J Opt Soc Am B, 2011, 28(4): 917-921.

    [24] Dupuis A, Mazhorova A, DUsUvUdavy F U U, et al.. Spectral characterization of porous dielectric subwavelength THz fi bers fabricated using a microstructured molding technique[J]. Opt Express, 2010, 18(13): 13813-13828.

    [25] Chen L J, Chen H W, Kao T F, et al.. Low-loss subwavelength plastic fiber for terahertz waveguiding[J]. Opt Lett, 2006, 31(3): 308-310.

    [26] Gao Fei, Chen Liqun, Feng Guangzhi, et al.. Progress of flexible and low-loss terahertz waveguides[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050005.

    [27] Lu J Y, Yu C P, Chang H C, et al.. Terahertz air-core microstructure fiber[J]. Appl Phys Lett, 2008, 92(6): 064105.

    [28] Lai C H, Hsueh Y C, Chen H W, et al.. Low-index terahertz pipe waveguides[J]. Opt Lett, 2009, 34(21): 3457-3459.

    [29] Lai C H, You B, Lu J Y, et al.. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding [J]. Opt Express, 2010, 18(1): 309-322.

    [30] Xiao M, Liu J, Zhang W, et al.. Self-supporting polymer pipes for low loss single-mode THz transmission[J]. Opt Express, 2013, 21(17): 19808-19815.

    [31] Chen H, Lee W J, Huang H Y, et al.. Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors [J]. Opt Express, 2011, 19(20): 19523-19531.

    [32] Mazhorova A, Markov A, Ng A, et al.. Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber[J]. Opt Express, 2012, 20(5): 5344-5355.

    [33] You B, Lu J Y, Liou J H, et al.. Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides [J]. Opt Express, 2010, 18(18): 19353-19360.

    [34] Jing Lei. Research on Novel Gas Sensors with Photonic Crystal Fibers[D]. Tianjin: Tianjin University, 2012.

    [35] Li Shanshan, Chang Shengjiang, Zhang Hao, et al.. Terahertz polarization splitter based on filled porous fiber[J]. Acta Optica Sinica, 2014, 34(7): 0723003.

    CLP Journals

    [1] Zhou Yi, Li Qi. Experiment of 2.52 THz Confocal Scanning 2D Axial Imaging Properties of Dual-Axis Reflection[J]. Laser & Optoelectronics Progress, 2016, 53(8): 81101