[1] Kim I C, Kim T H, Lee S H and Kim B S 2018 Extremely foldable and highly transparent nanofiber-based electrodes for liquid crystal smart devices Sci. Rep. 8 11517
[2] Chen F et al 2022 Mass transfer techniques for large-scale and high-density microLED arrays Int. J. Extreme Manuf. 4 042005
[3] Nakagaito A N, Nogi M and Yano H 2010 Displays from transparent films of natural nanofibers MRS Bull. 35 214–8
[4] HouC,XuZJ,QiuW, Wu RH,WangYN,XuQC, Liu X Y and Guo W X 2019 A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection Small 15 1805084
[5] Fan YJ et al 2018 Highly robust, transparent and breathable epidermal electrode ACS Nano 12 9326–32
[6] Wang Q, Jian M Q, Wang C Y and Zhang Y Y 2017 Carbonized silk nanofiber membrane for transparent and sensitive electronic skin Adv. Funct. Mater. 27 1605657
[7] WangXD,ZhangYF, ZhangXJ,HuoZH,LiXY, Que M L, Peng Z C, Wang H and Pan C F 2018 A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics Adv. Mater. 30 1706738
[8] LiT et al 2020 A leaf vein-like hierarchical silver grids transparent electrode towards high-performance flexible electrochromic smart windows Sci. Bull. 65 225–32
[9] Wu W N, Yu H F, Yeh M H and Ho K C 2020 Incorporating electrospun nanofibers of TEMPO-grafted PVDF-HFP polymer matrix in viologen-based electrochromic devices Sol. Energy Mater. Sol. Cells 208 110375
[10] Choi J H, Pande G K, Lee Y R and Park J S 2020 Electrospun ion gel nanofibers for high-performance electrochromic devices with outstanding electrochromic switching and long-term stability Polymer 194 122402
[11] Beaujuge P M and Reynolds J R 2010 Color control in π-conjugated organic polymers for use in electrochromic devices Chem. Rev. 110 268–320
[12] Zhang Y X, Kim J J, Chen D, Tuller H L and Rutledge G C 2014 Electrospun polyaniline fibers as highly sensitive room temperature chemiresistive sensors for ammonia and nitrogen dioxide gases Adv. Funct. Mater. 24 4005–14
[13] He X, Lin Y, Ding Y, Abdullah A M, Lei Z, Han Y, Shi X, Zhang W and Yu K 2022 Reshapeable, rehealable and recyclable sensor fabricated by direct ink writing of conductive composites based on covalent adaptable network polymers Int. J. Extreme Manuf. 4 015301
[14] Wang M et al 2021 Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications Int. J. Extreme Manuf. 3 025401
[15] Zhang W, Zhang L, Liao Y and Cheng H 2021 Conformal manufacturing of soft deformable sensors on the curved surface Int. J. Extreme Manuf. 3 042001
[16] ZhangDD,LiJ,SuZ,HuSY, LiHPandYan YW2018 Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors J. Adv. Ceram. 7 246–55
[17] Barranco V, Lillo-Rodenas M A, Linares-Solano A, Oya A, Pico F, Iba.nez J, Agullo-Rueda F, Amarilla J M and Rojo J M 2010 Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor electrodes J. Phys. Chem. C 114 10302–7
[18] Kwon S R, Harris J, Zhou T Y, Loufakis D, Boyd J G and Lutkenhaus J L 2017 Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power ACS Nano 11 6682–90
[19] Wang J, Suzuki R, Shao M, Gillot F and Shiratori S 2019 Capacitive pressure sensor with wide-range, bendable, and high sensitivity based on the bionic komochi konbu structure and Cu/Ni nanofiber network ACS Appl. Mater. Interfaces 11 11928–35
[20] ChengT, Wu YW, ChenYL,ZhangYZ,LaiWYand Huang W 2019 Inkjet-printed high-performance flexible micro-supercapacitors with porous nanofiber-like electrode structures Small 15 1901830
[21] Nguyen V H, Papanastasiou D T, Resende J, Bardet L, Sannicolo T, Jiménez C, Mu.noz-Rojas D, Nguyen N D and Bellet D 2022 Advances in flexible metallic transparent electrodes Small 18 2106006
[22] JoHS,AnS,LeeJG,ParkHG,Al-DeyabSS,YarinAL and Yoon S S 2017 Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface npg Asia Mater. 9 e347
[23] Pfleging W 2021 Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing Int. J. Extreme Manuf. 3 012002
[24] LinPC,HsiehCT, LiuX,ChangFC,ChenWC,Yu JSand Chueh C C 2021 Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate Chem. Eng. J. 405 126996
[25] Zhou Y, Liao F, Liu Y and Kang Z 2022 The advanced multi-functional carbon dots in photoelectrochemistry based energy conversion Int. J. Extreme Manuf. 4 042001
[26] Morales-Masis M, De Wolf S, Woods-Robinson R, Ager J W and Ballif C 2017 Transparent electrodes for efficient optoelectronics Adv. Electron. Mater. 3 1600529
[27] Xue D, Wang W, Piao L, Li M F, Wang S, Xiang C X and Wang D 2020 PVA-co-PE nanofibers synergistically reinforced composite film with high transparency and flexibility Compos. Commun. 20 100371
[28] GaoKZ,ShaoZQ,Wu X,WangX,LiJ,ZhangYH, Wang W J and Wang F J 2013 Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper Carbohydrate Polym. 97 243–51
[29] He T D, Xie A Z, Reneker D H and Zhu Y 2014 A tough and high-performance transparent electrode from a scalable and transfer-free method ACS Nano 8 4782–9
[30] Li M et al 2020 Embedded nickel-mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source Adv. Mater. 32 2003422
[31] Devarayan K, Lei D Y, Kim H Y and Kim B S 2015 Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor Chem. Eng. J. 273 603–9
[32] Kim J, Ouyang D, Lu H F, Ye F, Guo Y W, Zhao N and Choy W C H 2020 High performance flexible transparent electrode via one-step multifunctional treatment for ag nanonetwork composites semi-embedded in low-temperature-processed substrate for highly performed organic photovoltaics Adv. Energy Mater. 10 1903919
[33] ShiY, HeL,DengQ,LiuQX,LiLH,WangW, XinZQ and Liu R P 2019 Synthesis and applications of silver nanowires for transparent conductive films Micromachines 10 330
[34] QiangYX,ZhuCH,Wu YP, CuiSandLiuY2018 Bio-inspired semi-transparent silver nanowire conductor based on a vein network with excellent electromechanical and photothermal properties RSC Adv. 8 23066–76
[35] ZhangZ,WangHY, LiSY, LiLandLiDG2015 Transparent and flexible cellulose nanofibers/silver nanowires/acrylic resin composite electrode Composites A 76 309–15
[36] ZhouKL,HanCB,LiCF, JiuJT, YangY, LiL,WangH, Liu J B, Liu Z Q and Yan H 2018 Highly stable transparent conductive electrodes based on silver-platinum alloy-walled hollow nanowires for optoelectronic devices ACS Appl. Mater. Interfaces 10 36128–35
[37] Gaynor W, Burkhard G F, Mcgehee M D and Peumans P 2011 Smooth nanowire/polymer composite transparent electrodes Adv. Mater. 23 2905–10
[38] Kang M G and Guo L J 2007 Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes Adv. Mater. 19 1391–6
[39] JeongWL,MinJH,KwakHM,JeonYJ,LeeHJ,KimKP, Lee JS, Kang SJ, Kim D Y and Lee D S2019 A highly conductive and flexible metal mesh/ultrathin ITO hybrid transparent electrode fabricated using low-temperature crystallization J. Alloys Compd. 794 114–9
[40] Ohsawa M and Hashimoto N 2019 Bending reliability of flexible transparent electrode of gravure offset printed invisible silver-grid laminated with conductive polymer Microelectron. Reliab. 98 124–30
[41] ZhangYF, LiZH,LiHK,LiHG,XiongY, ZhuXY, Lan H B and Ge Q 2021 Fractal-based stretchable circuits via electric-field-driven microscale 3D printing for localized heating of shape memory polymers in 4D printing ACS Appl. Mater. Interfaces 13 41414–23
[42] Wang Z, Zhang G M, Huang H, Qian L, Liu X L and Lan H B 2021 The self-induced electric-field-driven jet printing for fabricating ultrafine silver grid transparent electrode Virtual Phys. Prototyp. 16 113–23
[43] LiHK,ZhangYX,TaiYP, ZhuXY, QiXM,ZhouLJ, Li Z J and Lan H B 2022 Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing Opt. Laser Technol. 148 107717
[44] Hofmann A I, Cloutet E and Hadziioannou G 2018 Materials for transparent electrodes: from metal oxides to organic alternatives Adv. Electron. Mater. 4 1700412
[45] Zhang C, Yang Q, Yong J, Shan C, Zhang J, Hou X and Chen F 2021 Guiding magnetic liquid metal for flexible circuit Int. J. Extreme Manuf. 3 113–23
[46] Hu L B, Wu H and Cui Y 2011 Metal nanogrids, nanowires, and nanofibers for transparent electrodes MRS Bull. 36 760–5
[47] Mallikarjuna K and Kim H 2019 Highly transparent conductive reduced graphene oxide/silver nanowires/silver grid electrodes for low-voltage electrochromic smart windows ACS Appl. Mater. Interfaces 11 1969–78
[48] Yu C H, Chi H H and Hsiao C C 2019 42.3: Invited Paper: silver nanowire for next generation touch solution SID Symp. Digest of Technical Papers vol 50 pp 476–8
[49] Koga H, Nogi M, Komoda N, Nge T T, Sugahara T and Suganuma K 2014 Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics npg Asia Mater. 6 e93
[50] DingYN,CuiYC,LiuXH,LiuGXandShanFK2020 Welded silver nanowire networks as high-performance transparent conductive electrodes: welding techniques and device applications Appl. Mater. Today 20 100634
[51] Jang S et al 2016 A three-dimensional metal grid mesh as a practical alternative to ITO Nanoscale 8 14257–63
[52] ZhuXY et al 2021 Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing Adv. Mater. 33 2007772
[53] ZhuXY et al 2019 Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D printing and UV-assisted microtransfer Adv. Mater. 31 1902479
[54] GuoCF, SunTY, LiuQH,SuoZGandRenZF2014 Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography Nat. Commun. 5 3121
[55] ParkJ,HyunBG,AnBW, ImHG,ParkYG,JangJ, Park J U and Bae B S 2017 Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics ACS Appl. Mater. Interfaces 9 20299–305
[56] Zhang W, Ye H, Feng X, Zhou W, Cao K, Li M, Fan S and Lu Y 2022 Tailoring mechanical properties of PμSL 3D-printed structures via size effect Int. J. Extreme Manuf. 4 261–8
[57] Cao S M, Feng X, Song Y Y, Xue X, Liu H J, Miao M, Fang J H and Shi L Y 2015 Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries ACS Appl. Mater. Interfaces 7 10695–701
[58] JiangCM,LiQK,Fan SW, GuoQL,BiS,WangXH, Cao X W, Liu Y and Song J H 2020 Hyaline and stretchable haptic interfaces based on serpentine-shaped silver nanofiber networks Nano Energy 73 104782
[59] Surjadi J U, Feng X, Zhou W and Lu Y 2021 Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices Int. J. Extreme Manuf. 3 025101
[60] Lu X, Zhang Y K and Zheng Z J 2021 Metal-based flexible transparent electrodes: challenges and recent advances Adv. Electron. Mater. 7 2001121
[61] ZhaoYL,LiuHZ,Yan Y, ChenTW, Yu HH,EjetaLO, Zhang G H and Duan H G 2023 Flexible transparent electrochemical energy conversion and storage: from electrode structures to integrated applications Energy Environ. Mater. 6 e12303
[62] Tanpichai S, Biswas S K, Witayakran S and Yano H 2020 Optically transparent tough nanocomposites with a hierarchical structure of cellulose nanofiber networks prepared by the Pickering emulsion method Composites A 132 105811
[63] Zhang C P, Cai J X, Liang C W, Khan A and Li W D 2019 Scalable fabrication of metallic nanofiber network via templated electrodeposition for flexible electronics Adv. Funct. Mater. 29 1903123
[64] Gao K Z, Shao Z Q, Wang X, Zhang Y H, Wang W J and Wang F J 2013 Cellulose nanofibers/multi-walled carbon Nanotube nanohybrid aerogel for all solid-state flexible supercapacitors RSC Adv. 3 15058–64
[65] Tang P D, Zheng X T, Yang H K, He J, Zheng Z W, Yang W Q and Zhou S B 2019 Intrinsically stretchable and shape memory conducting nanofiber for programmable flexible electronic films ACS Appl. Mater. Interfaces 11 48202–11
[66] Nogi M and Yano H 2009 Optically transparent nanofiber sheets by deposition of transparent materials: a concept for a roll-to-roll processing Appl. Phys. Lett. 94 233117
[67] Meng Y N, Zhao Y, Hu C G, Cheng H H, Hu Y, Zhang Z P, Shi G Q and Qu L T 2013 All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles Adv. Mater. 25 2326–31
[68] Ramalingam K J, Dhineshbabu N R, Srither S R, Saravanakumar B, Yuvakkumar R and Rajendran V 2014 Electrical measurement of PVA/graphene nanofibers for transparent electrode applications Synth. Met. 191 113–9
[69] Imazu N, Fujigaya T and Nakashima N 2014 Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes Sci. Technol. Adv. Mater. 15 025005
[70] Im J S, Kim S J, Kang P H and Lee Y S 2009 The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs J. Ind. Eng. Chem. 15 699–702
[71] DiJT, ZhangXH,YongZZ,ZhangYY, LiD,LiR and Li Q W 2016 Carbon-nanotube fibers for wearable devices and smart textiles Adv. Mater. 28 10529–38
[72] LiHB,Pan LK,ZhangYP, ZouLD,SunCQ,ZhanYK and Sun Z 2010 Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes Chem. Phys. Lett. 485 161–6
[73] Hong E K and Cho W J 2020 Microwave calcination of electrospun ITO nanofibers and improvement of transparent electrode characteristics through vacuum rapid thermal annealing Mater. Res. Exp. 7 075013
[74] Wu H,HuLB,RowellMW, KongDS,ChaJJ, Mcdonough J R, Zhu J, Yang Y, Mcgehee M D and Cui Y 2010 Electrospun metal nanofiber webs as high-performance transparent electrode Nano Lett. 10 4242–8
[75] Jang J, Hyun B G, Ji S, Cho E, An B W, Cheong W H and Park J U 2017 Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters npg Asia Mater. 9 e432
[76] Lin S et al 2019 Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding npj Flex. Electron. 3 6
[77] Kang T S, Lee S W, Joo J and Lee J Y 2005 Electrically conducting polypyrrole fibers spun by electrospinning Synth. Met. 153 61–64
[78] ZhangQQ,WangXX,FuJ,LiuRQ,HeHW, MaJW, Yu M, Ramakrishna S and Long Y Z 2018 Electrospinning of ultrafine conducting polymer composite nanofibers with diameter less than 70 nm as high sensitive gas sensor Materials 11 1744
[79] Wan M X 2008 Conducting Polymers with Micro or Nanometer Structure (Berlin: Springer)
[80] Lamastra F R, Nanni F, Menchini F, Nunziante P and Grilli M L 2016 Transparent nanostructured electrodes: electrospun NiO nanofibers/NiO films Thin Solid Films 601 54–58
[81] Duszová A, Dusza J, Tomásek K, Morgiel J, Blugan G and Kuebler J 2008 Zirconia/carbon nanofiber composite Scr. Mater. 58 520–3
[82] Wang L, Chai R, Lou Z and Shen G 2018 Highly sensitive hybrid nanofiber-based room-temperature CO sensors: experiments and density functional theory simulations Nano Res. 11 1029–37
[83] Choi Y I, Hwang B U, Meeseepong M, Hanif A, Ramasundaram S, Trung T Q and Lee N E 2019 Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions Nanoscale 11 3916–24
[84] Chen P, Hu S Y, Zhou T, Li H P and Yan Y W 2016 Cu/TiN nanofiber with tunable electrical conductivity for cost-efficient transparent electrode Chem. Eng. J. 306 139–45
[85] Wang J, Yao S W, Ma Y Z and Liu W S 2021 Electrode polarity effects in electrospinning organic/inorganic hybrid nanofibers Ceram. Int. 47 4352–6
[86] Jiang D H, Tsai P C, Kuo C C, Jhuang F C, Guo H C, Chen S P, Liao Y C, Satoh T and Tung S H 2019 Facile preparation of Cu/Ag core/shell electrospun nanofibers as highly stable and flexible transparent conductive electrodes for optoelectronic devices ACS Appl. Mater. Interfaces 11 10118–27
[87] Matrenichev V V, Shishov M A, Popryadukhin P V, Sapurina I Y, Ivan’Kova E M, Dobrovol’Skaya I P and Yudin V E 2017 Preparation of conducting composite materials based on polymer nanofibers and polypyrrole Russ. J. Appl. Chem. 90 1680–5
[88] Mclellan K, Yoon Y, Leung S N and Ko S H 2020 Recent progress in transparent conductors based on nanomaterials: advancements and challenges Adv. Mater. Technol. 5 1900939
[89] Ye D,DingYJ,DuanYQ,SuJT, YinZPandHuangYA 2018 Large-scale direct-writing of aligned nanofibers for flexible electronics Small 14 1703521
[90] XuQ,Wu CH,SunXT, LiuHY, YangH,HuHand Wu M B 2021 Flexible electrodes with high areal capacity based on electrospun fiber mats Nanoscale 13 18391–409
[91] Kim K, Hyun B G, Jang J, Cho E, Park Y G and Park J U 2016 Nanomaterial-based stretchable and transparent electrodes J. Inf. Disp. 17 131–41
[92] Wu H et al 2011 Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes J. Am. Chem. Soc. 133 27–29
[93] HuangY, BaiXP, ZhouM,LiaoSY, Yu ZF, WangYPand Wu H 2016 Large-scale spinning of silver nanofibers as flexible and reliable conductors Nano Lett. 16 5846–51
[94] ParkYS,KimJ,OhJM,ParkS,ChoS,Ko HandChoYK 2020 Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios Nano Lett. 20 441–8
[95] Kim J T, Pyo J, Rho J, Ahn J H, Je J H and Margaritondo G 2012 Three-dimensional writing of highly stretchable organic nanowires ACS Macro Lett. 1 375–9
[96] BaeJ,ChaeY, ParkJG,Wu RH,JuJandKimT2021 Direct single-step printing of conductive grids on curved surfaces using template-guided foaming ACS Appl. Mater. Interfaces 13 19168–75
[97] Huang S Y, Liu Y, Guo C F and Ren Z F 2017 A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled au nanotrough network Adv. Electron. Mater. 3 1600534
[98] Soltanian S, Rahmanian R, Gholamkhass B, Kiasari N M, Ko F and Servati P 2013 Highly stretchable, sparse, metallized nanofiber webs as thin, transferrable transparent conductors Adv. Energy Mater. 3 1332–7
[99] Lin S et al 2017 Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows Adv. Mater. 29 1703238
[100] LeeY, KimTS,MinSY, XuWT, JeongSH,SeoHKand Lee T W 2014 Individually position-addressable metal-nanofiber electrodes for large-area electronics Adv. Mater. 26 8010–6
[101] Peng X, Dong K, Zhang Y F, Wang L L, Wei C H, Lv T M, Wang Z L and Wu Z Y 2022 Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers Adv. Funct. Mater. 32 2112241
[102] Yu Q Z, Shi M M, Deng M, Wang M and Chen H Z 2008 Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning Mater. Sci. Eng. B 150 70–76
[103] SongLX,YinX,XieXY, DuPF, XiongJandKo F2017 Highly flexible TiO2/C nanofibrous film for flexible dye-sensitized solar cells as a platinum-and transparent conducting oxide-free flexible counter electrode Electrochim. Acta 255 256–65
[104] Ji S, Park J, Jo Y, Kim Y B, Jang J, Kim S K, Jeong S and Park J U 2019 Haze-free transparent electrodes using metal nanofibers with carbon shells for high-temperature stability Appl. Surf. Sci. 483 1101–9
[105] Park J and Jeon H J 2022 PDMS micro-dewy spider-web-like metal nanofiber films for fabrication of high-performance transparent flexible electrode with improved mechanical strength Microelectron. Eng. 258 111777
[106] Singh S B, Kshetri T, Singh T I, Kim N H and Lee J H 2019 Embedded PEDOT:PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor Chem. Eng. J. 359 197–207
[107] Nogi M, Kim C, Sugahara T, Inui T, Takahashi T and Suganuma K 2013 High thermal stability of optical transparency in cellulose nanofiber paper Appl. Phys. Lett. 102 181911
[108] Gao J W, Xian Z K, Zhou G F, Liu J M and Kempa K 2018 Nature-inspired metallic networks for transparent electrodes Adv. Funct. Mater. 28 1705023
[109] LiFL et al 2020 Synergistic improvement for mechanical, thermal and optical properties of PVA-co-PE nanofiber/epoxy composites with cellulose nanocrystals Compos. Sci. Technol. 188 107990
[110] Sobolciak P, Ali A, Hassan M K, Helal M I, Tanvir A, Popelka A, Al-Maadeed M A, Krupa I and Mahmoud K A 2017 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties PLoS One 12 e0183705
[111] Yoon S, Kim H, Cha S J, Shin E S, Noh Y Y, Hong S J, Park B and Hwang I 2017 Role of ITO nanoparticles embedded into electrospun ITO nanofibers J. Phys. D: Appl. Phys. 50 475305
[112] Alegre C, Busacca C, Di Blasi A, Di Blasi O, Aric`o A S, Antonucci V and Baglio V 2020 Toward more efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning Mater. Today Energy 18 100508
[113] Wang H, Tang C, Sun B, Liu J, Xia Y, Li W, Jiang C, He D and Xiao X 2022 In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction Int. J. Extreme Manuf. 4 035002
[114] Li H P, Su Z, Hu S Y and Yan Y W 2017 Free-standing and flexible Cu/Cu2O/CuO heterojunction net: a novel material as cost-effective and easily recycled visible-light photocatalyst Appl. Catal. B 207 134–42
[115] Mierzwa M, Lamouroux E, Durand P and Etienne M 2018 Highly interconnected macroporous and transparent indium tin oxide electrode ChemElectroChem 5 397–404
[116] Dattoli E N and Lu W 2011 ITO nanowires and nanoparticles for transparent films MRS Bull. 36 782–8
[117] Zheng Z, Gan L, Li H Q, Ma Y, Bando Y, Golberg D and Zhai T Y 2015 A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO-CdO heterojunction nanofiber arrays Adv. Funct. Mater. 25 5885–94
[118] Zheng Z, Gan L, Zhang J B, Zhuge F W and Zhai T Y 2017 An enhanced uv-vis-nir an d flexible photodetector based on electrospun zno nanowire array/pbs quantum dots film heterostructure Adv. Sci. 4 1600316
[119] Lee Y I and Choa Y H 2012 Synthesis of silver nanofibers via an electrospinning process and two-step sequential thermal treatment and their application to transparent conductive electrodes Korean J. Mater. Res. 22 562–8
[120] Lee Y I 2015 Study on the diameter-controlled synthesis of silver nanofibers and their application to transparent conductive electrodes Korean J. Mater. Res. 25 537–42
[121] Blaszkiewicz M, Mclachlan D S and Newnham R E 1991 Study of the volume fraction, temperature, and pressure dependence of the resistivity in a ceramic-polymer composite using a general effective media theory equation J. Mater. Sci. 26 5899–903
[122] Wassei J K and Kaner R B 2010 Graphene, a promising transparent conductor Mater. Today 13 52–59
[123] Duong T H and Kim H C 2018 Extremely simple and rapid fabrication of flexible transparent electrodes using ultralong copper nanowires Ind. Eng. Chem. Res. 57 3076–82
[124] Mohamadbeigi N, Angizi S, Sadrnezhaad S K and Nikzad M J 2019 Improving the multi-step fabrication approach of copper nanofiber networks based transparent electrode for achieving superb conductivity and transparency Mater. Res. Express 6 095098
[125] Huang Y J et al 2021 In-situ synchrotron SAXS and WAXS investigation on the deformation of single and coaxial electrospun P(VDF-TrFE)-based nanofibers Int. J. Mol. Sci. 22 12669
[126] Yoon J,AnYS,HongSB,MyungJH,SunJYandYu WR 2020 Fabrication of a highly stretchable, wrinkle-free electrode with switchable transparency using a free-standing silver nanofiber network and shape memory polymer substrate Macromol. Rapid Commun. 41 2000129
[127] LiZX,QiWK,LiLD,MaZY, LaiWD,LiL,JinXS, Zhang Y C and Zhang W M 2021 Preparation of carbon nanofibers supported Bi2MoO6 nanosheets as counter electrode materials on Titanium mesh substrate for dye-sensitized solar cells Sol. Energy 214 502–9
[128] Liu L, Hu S and Gao K 2020 Cellulose nanofiber based flexible N-doped carbon mesh for energy storage electrode with super folding endurance Mater. Today Energy 17 100441
[129] Zhang B, Kang F Y, Tarascon J M and Kim J K 2016 Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage Prog. Mater. Sci. 76 319–80
[130] Wang H, Niu H T, Wang H J, Wang W Y, Jin X, Wang H X, Zhou H and Lin T 2021 Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance J. Power Sources 482 228986
[131] Yan T, Wang Z, Wang Y Q and Pan Z J 2018 Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors Mater. Des. 143 214–23
[132] YangGJ,YangBG,MuWJ,GeYH,CaiYR,Yao ZQ, Ma Z Y, Zhang Y M and Zhang S X A 2020 A transparent multidimensional electrode with indium tin oxide nanofibers and gold nanoparticles for bistable electrochromic devices ACS Appl. Mater. Interfaces 12 27453–60
[133] Xiang R 2022 Atomic precision manufacturing of carbon nanotube—a perspective Int. J. Extreme Manuf. 4 023001
[134] QiK,ZhouYM,OuKK,DaiYL,You XL,WangHB, He J X, Qin X H and Wang R W 2020 Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor Carbon 170 464–76
[135] Pan J J et al 2020 Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn Composites A 183 107683
[136] Kanygin M A, Shafiei M and Bahreyni B 2020 Electrostatic twisting of core-shell nanofibers for strain sensing applications ACS Appl. Polym. Mater. 2 4472–80
[137] LiYH et al 2018 Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing J. Mater. Chem. C 6 2258–69
[138] GaoY, GuoFY, CaoP, LiuJC,LiDM,Wu J,WangN, Su Y W and Zhao Y 2020 Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor ACS Nano 14 3442–50
[139] Baker C O, Huang X W, Nelson W and Kaner R B 2017 Polyaniline nanofibers: broadening applications for conducting polymers Chem. Soc. Rev. 46 1510–25
[140] Bessaire B, Mathieu M, Salles V, Yeghoyan T, Celle C, Simonato J P and Brioude A 2017 Synthesis of continuous conductive PEDOT:PSS nanofibers by electrospinning: a conformal coating for optoelectronics ACS Appl. Mater. Interfaces 9 950–7
[141] Chen C T et al 2015 Three-dimensional BC/PEDOT composite nanofibers with high performance for electrode-cell interface ACS Appl. Mater. Interfaces 7 28244–53
[142] JuYW, ChoiGR,JungHRandLeeWJ2008 Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole Electrochim. Acta 53 5796–803
[143] Shi H H, Khalili N, Morrison T and Naguib H E 2018 Self-assembled nanorod structures on nanofibers for textile electrochemical capacitor electrodes with intrinsic tactile sensing capabilities ACS Appl. Mater. Interfaces 10 19037–46
[144] Liu G Q, Xia X, Zhao C J, Zhang X and Zhang W X 2021 Ultrafine Ni nanoparticles anchored on carbon nanofibers as highly efficient bifunctional air electrodes for flexible solid-state zinc-air batteries J. Colloid Interface Sci. 588 627–36
[145] Wan M X 2009 Some issues related to polyaniline micro-/nanostructures Macromol. Rapid Commun. 30 963–75
[146] Uh K, Kim T, Lee C W and Kim J M 2016 A precursor approach to electrospun polyaniline nanofibers for gas sensors Macromol. Mater. Eng 301 1320–6
[147] Kim T, Yang S J, Sung S J, Kim Y S, Chang M S, Jung H and Park C R 2015 Highly reproducible thermocontrolled electrospun fiber based organic photovoltaic devices ACS Appl. Mater. Interfaces 7 4481–7
[148] Erdemutu E, Bai C and Ding L J 2020 Electrospun Ni-Ni(OH)2/carbon nanofibers as flexible binder-free supercapacitor electrode with enhanced specific capacitance J. Electron. Mater. 49 7211–8
[149] Chen J, Guo B L, Eyster T W and Ma P X 2015 Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly Chem. Mater. 27 5668–77
[150] HanJQ,LuKY,Yue YY, MeiCT, HuangCB,WuQLand Xu X W 2019 Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors Ind. Crops Prod. 128 94–107
[151] Gao Q, Wang P, Wang M X, Wang Y H and Zhu J D 2021 Metal salt modified PEDOT: PSS fibers with enhanced elongation and electroconductivity for wearable e-textiles Compos. Commun. 25 100700
[152] Noh J S 2016 Conductive elastomers for stretchable electronics, sensors and energy harvesters Polymers 8 123
[153] Lee Y et al 2018 Deformable organic nanowire field-effect transistors Adv. Mater. 30 1704401
[154] LeeMY, HongJ,LeeEK,Yu H,KimH,LeeJU,LeeW and Oh J H 2016 Highly flexible organic nanofiber phototransistors fabricated on a textile composite for wearable photosensors Adv. Funct. Mater. 26 1445–53
[155] ZhouYM,LiaoHR,QiQH,GuoCZ,QiK,OuKK, He JX, Wang H B,WangR W and Chen X G2022 Polypyrrole-coated graphene oxide-doped polyacrylonitrile nanofibers for stretchable strain sensors ACS Appl. Nano Mater. 5 8224–31
[156] Chen J Y, Hsieh H C, Chiu Y C, Lee W Y, Hung C C, Chueh C C and Chen W C 2020 Electrospinning-induced elastomeric properties of conjugated polymers for extremely stretchable nanofibers and rubbery optoelectronics J. Mater. Chem. C 8 873–82
[157] Duzyer S, Sinha-Ray S, Sinha-Ray S and Yarin A L 2017 Transparent conducting electrodes from conducting polymer nanofibers and their application as thin-film heaters Macromol. Mater. Eng. 302 1700188
[158] Chaudhari S, Sharma Y, Archana P S, Jose R, Ramakrishna S, Mhaisalkar S and Srinivasan M 2013 Electrospun polyaniline nanofibers web electrodes for supercapacitors J. Appl. Polym. Sci. 129 1660–8
[159] Zhou K et al 2018 A hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application ACS Nano 12 5888–94
[160] Watson B W, Meng L Y, Fetrow C and Qin Y 2016 Core/shell conjugated polymer/quantum dot composite nanofibers through orthogonal non-covalent interactions Polymers 8 408
[161] Li H P, Sun Y, Zhang W and Pan W 2010 Preparation of heterostructured Ag/BaTiO3 nanofibers via electrospinning J. Alloys Compd. 508 536–9
[162] Pardo F N, Benetti D, Zhao H G, Casta.no V M, Vomiero A and Rosei F 2016 Platinum/Palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer J. Power Sources 335 138–45
[163] LiZ,MeiSQ,DongYJ,SheFH,LiPW, LiYZand Kong L X 2021 Multi-functional core-shell nanofibers for wound healing Nanomaterials 11 1546
[164] HuXH,Yan X,GongLL,WangFF, XuYH,FengL, Zhang D Y and Jiang Y G 2019 Improved piezoelectric sensing performance of P(VDF-TrFE) nanofibers by utilizing BTO nanoparticles and penetrated electrodes ACS Appl. Mater. Interfaces 11 7379–86
[165] Liu Y K, Jiang G H, Sun S Q, Xu B, Zhou J Y, Zhang Y and Yao J M 2018 Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors J. Alloys Compd. 731 560–8
[166] Maiyalagan T 2009 Silicotungstic acid stabilized Pt-Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation Int. J. Hydrog. Energy 34 2874–9
[167] Karim M R 2013 Fabrication of electrospun aligned nanofibers from conducting polyaniline copolymer/polyvinyl alcohol/chitosan oligossacaride in aqueous solutions Synth. Met. 178 34–37
[168] Siddiqui S, Kim D I, Roh E, Duy L T, Trung T Q, Nguyen M T and Lee N E 2016 A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system Nano Energy 30 434–42
[169] LiuX,LiuY, Yan XD,LanJL,Yu YHandYangXP2019 Ultrafine MoO3 nanoparticles embedded in porous carbon nanofibers as anodes for high-performance lithium-ion batteries Mater. Chem. Front. 3 120–6
[170] HuSY, SuZ,ZhangDD,LiJ,LiHPandYan YW2018 Freestanding and flexible electrode: heterostructured Ag/C nanofiber network with ultra high conductivity J. Alloys Compd. 735 2012–21
[171] LiXH,WangXX,LiJJ,LiuG,JiaDC,MaZL,ZhangL, Peng Z and Zhu X Y 2022 High-performance, flexible, binder-free silicon-carbon anode for lithium storage applications Electrochem. Commun. 137 107257
[172] Shao S, Yang Y, Guo S W, Hao S J, Yang F, Zhang S Y, Ren Y and Ke Y C 2021 Highly active and stable Co nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers for aqueous-phase levulinic acid hydrogenation Green Energy Environ. 6 567–77
[173] Huang T M, Pang F, Hsieh I F and Cakmak M 2016 Control of radial structural gradient in PAN/silver nanofibers using solvent vapor treatment Synth. Met. 221 309–18
[174] HeYH et al 2020 Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells Adv. Mater. 32 2003577
[175] Liu L L, Hu S Q and Gao K Z 2020 Natural nanofiber-based stacked porous nitrogen-doped carbon/NiFe2O4 nanohybrid nanosheets Cellulose 27 1021–31
[176] MeiQW, FuR,DingYP, LiL,WangAQ,DuanDDand Ye D X 2019 Electrospinning of highly dispersed Ni/CoO carbon nanofiber and its application in glucose electrochemical sensor J. Electroanal. Chem. 847 113075
[177] Park S W, Shim H W, Kim J C and Kim D W 2017 Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries J. Alloys Compd. 728 490–6
[178] WangSW, ZhangL,WangLL,HeYMandWu MH2022 Fluorinated barium titanate nanoparticles for wearable piezoelectric power generation ACS Appl. Nano Mater. 5 3352–60
[179] Kim Y I, Samuel E, Joshi B, Kim M W, Kim T G, Swihart M T and Yoon S S 2018 Highly efficient electrodes for supercapacitors using silver-plated carbon nanofibers with enhanced mechanical flexibility and long-term stability Chem. Eng. J. 353 189–96
[180] MaLY, NieY, LiuYR,HuoF, BaiL,LiQandZhangSJ 2021 Preparation of core/shell electrically conductive fibers by efficient coating carbon nanotubes on polyester Adv. Fiber Mater. 3 180–91
[181] ZhangHR,ZouXG,LiangJJ,MaX,TangZYandSunJL 2012 Development of electroless silver plating on Para-aramid fibers and growth morphology of silver deposits J. Appl. Polym. Sci. 124 3363–71
[182] MinSY, LeeY, KimSH,ParkCandLeeTW2017 Room-temperature-processable wire-templated nanoelectrodes for flexible and transparent all-wire electronics ACS Nano 11 3681–9
[183] Hsu P C, Wu H, Carney T J, Mcdowell M T, Yang Y, Garnett E C, Li M, Hu L B and Cui Y 2012 Passivation coating on electrospun copper nanofibers for stable transparent electrodes ACS Nano 6 5150–6
[184] Fedorchenko A I, Wang A B and Cheng H H 2009 Thickness dependence of nanofilm elastic modulus Appl. Phys. Lett. 94 152111
[185] HuSY, ChenT, LiangJY, ZhouHM,LiDQ,LiHPand Yan Y W 2019 Solution electrowriting of highly stable TiN nanofiber pattern for transparent electrode under extreme environment J. Am. Ceram. Soc. 102 3972–9
[186] ImHG,JungSH,JinJ,LeeD,LeeJ,LeeD,LeeJ,KimID and Bae B S 2014 Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics ACS Nano 8 10973–9
[187] LiXH,ZhouBM,WangW, XuZW, LiN,KuangLY, Li C Y, Mai W, FuHJandLvHM 2017Superior cyclability of branch-like TiO2 embedded on the mesoporous carbon nanofibers as free-standing anodes for lithium-ion batteries J. Alloys Compd. 706 103–9
[188] Ghosh S, Mallik A K and Basu R N 2018 Enhanced photocatalytic activity and photoresponse of poly(3,4-ethylenedioxythiophene) nanofibers decorated with gold nanoparticle under visible light Sol. Energy 159 548–60
[189] Chen X, Guo S, Li J W, Zhang G T, Lu M and Shi Y 2013 Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors Sens. Actuators A 199 372–8
[190] Bai X P, Liao S Y, Huang Y, Song J N, Liu Z L, Fang M H, Xu C C, Cui Y and Wu H 2017 Continuous draw spinning of extra-long silver submicron fibers with micrometer patterning capability Nano Lett. 17 1883–91
[191] JiangCM,Tan DC,LiQK,HuangJJ,BuJY, ZangLY, Ji R N, Bi S and Guo Q L 2021 High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding ACS Appl. Mater. Interfaces 13 15525–35
[192] Wu H,KongDS,RuanZC,HsuPC,WangS,Yu ZF, Carney TJ, HuL B,Fan S H and Cui Y 2013 A transparent electrode based on a metal nanotrough network Nat. Nanotechnol. 8 421–5
[193] An S, Kim Y I, Sinha-Ray S, Kim M W, Jo H S, Swihart M T, Yarin A L and Yoon S S 2017 Facile processes for producing robust, transparent, conductive platinum nanofiber mats Nanoscale 9 6076–84
[194] Zheng L Y, Hu S Y, Li H P and Yan Y W 2020 Ultra-long W microfiber achieving 0.2 . sq.1 @ 90% transparency as new-type high-performance flexible transparent conductor Chem. Eng. J. 388 124160
[195] ChenP, LiHP, HuSY, ZhouT, Yan YWandPan W2015 Copper-coated TiN nanofibers with high electrical conductivity: a new advance in conductive one-dimensional nanostructures J. Mater. Chem. C 3 7272–6
[196] An S et al 2016 Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating Adv. Mater. 28 7149–54
[197] SinghSB,SinghTI,KimNHandLeeJH2019A core-shell MnO2@Au nanofiber network as a high-performance flexible transparent supercapacitor electrode J. Mater. Chem. A 7 10672–83
[198] AnBW, GwakEJ,KimK,KimYC,JangJ,KimJYand Park J U 2016 Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability Nano Lett. 16 471–8
[199] Huh J W, Jeon H J and Ahn C W 2017 Flexible transparent electrodes made of core-shell-structured carbon/metal hybrid nanofiber mesh films fabricated via electrospinning and electroplating Curr. Appl. Phys. 17 1401–8
[200] Soram B S, Thangjam I S, Dai J Y, Kshetri T, Kim N H and Lee J H 2020 Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode Chem. Eng. J. 395 125019
[201] Hsu P C, Kong D S, Wang S, Wang H T, Welch A J, Wu H and Cui Y 2014 Electrolessly deposited electrospun metal nanowire transparent electrodes J. Am. Chem. Soc. 136 10593–6
[202] Yang X, Hu X T, Wang Q X, Xiong J, Yang H J, Meng X C, Tan L C, Chen L and Chen Y W 2017 Large-scale stretchable semiembedded copper nanowire transparent conductive films by an electrospinning template ACS Appl. Mater. Interfaces 9 26468–75
[203] Wu B, He W, Lu M T, Li Z and Qiang H 2020 Fabrication and electrochemical properties of flexible transparent supercapacitor electrode materials based on cellulose nanofibrils and reduced graphene oxide Polym. Compos. 41 1135–44
[204] ZhaiJF, YinX,SongLX,ChenWH,DuPFandXiongJ 2021 Preparation of fabric-like transparent electrode for flexible perovskite solar cell Thin Solid Films 729 138698
[205] KwakCS,Ko TH,LeeJH,KimHYandKimBS2020 Flexible transparent symmetric solid-state supercapacitors based on NiO-decorated nanofiber-based composite electrodes with excellent mechanical flexibility and cyclability ACS Appl. Energy Mater. 3 2394–403
[206] Liang J, Sheng H W, Wang Q, Yuan J, Zhang X T, Su Q, Xie E Q, Lan W and Zhang C 2021 PEDOT:PSS glued MoO3 nanowire network for all-solid-state flexible transparent supercapacitors Nanoscale Adv. 3 3502–12
[207] Peng H C, Pan M F, Jiang H, Huang W H, Wang X, Yang Q, Chen S and Yan B 2022 Cobweb-inspired quintuple network structures toward high-performance wearable electrochromic devices with excellent bending resistance ACS Appl. Mater. Interfaces 14 42402–11
[208] BuJY, Tan DC,SunN,JiangCM,LiQK,BiSand Song J H 2022 Silver nanotube networks with ultrahigh strain limit as reliable flexible transparent electrode and tactile sensor Adv. Eng. Mater. 24 2100832
[209] Singh S B, Hu Y B, Kshetri T, Kim N H and Lee J H 2017 An embedded-PVA@Ag nanofiber network for ultra-smooth, high performance transparent conducting electrodes J. Mater. Chem. C 5 4198–205
[210] Miyamoto A et al 2017 Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes Nat. Nanotechnol. 12 907–13
[211] Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C and Bae B S 2016 Chitin nanofiber transparent paper for flexible green electronics Adv. Mater. 28 5169–75
[212] Kang D H and Kang H W 2018 Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication Appl. Surf. Sci. 455 251–7
[213] Li D, Ouyang G, Mccann J T and Xia Y N 2005 Collecting electrospun nanofibers with patterned electrodes Nano Lett. 5 913–6
[214] Huang Y, Song J N, Yang C, Long Y Z and Wu H 2019 Scalable manufacturing and applications of nanofibers Mater. Today 28 98–113
[215] Zhang M, Chen Y L, Chiang F P, Gouma P I and Wang L F 2018 Modeling the large deformation and microstructure evolution of nonwoven polymer fiber networks J. Appl. Mech. 86 011010
[216] LeiTP, XuZJ,CaiXM,XuLandSunDH2018New insight into gap electrospinning: toward meter-long aligned nanofibers Langmuir 34 13788–93
[217] An S, Liou M, Song K Y, Jo H S, Lee M W, Al-Deyab S S, Yarin A L and Yoon S S 2015 Highly flexible transparent self-healing composite based on electrospun core-shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation Nanoscale 7 17778–85
[218] Banitaba S N, Semnani D, Heydari-Soureshjani E, Rezaei B and Ensafi A A 2020 Electrospun core-shell nanofibers based on polyethylene oxide reinforced by multiwalled carbon nanotube and silicon dioxide nanofillers: a novel and effective solvent-free electrolyte for lithium ion batteries Int. J. Energy Res. 44 7000–14
[219] Kasuga T, Saito T, Koga H and Nogi M 2022 One-pot hierarchical structuring of nanocellulose by electrophoretic deposition ACS Nano 16 18390–7
[220] Wang X X, Yu G F, Zhang J, Yu M, Ramakrishna S and Long Y Z 2021 Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications Prog. Mater. Sci. 115 100704
[221] Shen C W, Wang C P, Sanghadasa M and Lin L W 2017 Flexible micro-supercapacitors prepared using direct-write nanofibers RSC Adv. 7 11724–31
[222] Hu S Y, Li H P, Su Z and Yan Y W 2017 Parallel patterning of SiO2 wafer via near-field electrospinning of metallic salts and polymeric solution mixtures Nanotechnology 28 415301
[223] Nazemi M M, Khodabandeh A and Hadjizadeh A 2022 Near-field electrospinning: crucial parameters, challenges, and applications ACS Appl. Bio Mater. 5 394–412
[224] Wang Z F, Chen X D, Zhang J R, Lin Y J, Li K, Zeng J, Wu P X, He Y B, Li Y and Wang H 2018 Fabrication and evaluation of controllable deposition distance for aligned pattern by multi-nozzle near-field electrospinning AIP Adv. 8 075111
[225] Liashenko I, Ramon A, Cabot A and Rosell-Llompart J 2021 Ultrafast electrohydrodynamic 3D printing with in situ jet speed monitoring Mater. Des. 206 109791
[226] Lee A, Jin H, Dang H W, Choi K H and Ahn K H 2013 Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing Langmuir 29 13630–9
[227] DuanYQ,DingYJ,XuZL,HuangYAandYinZP2017 Helix electrohydrodynamic printing of highly aligned serpentine micro/nanofibers Polymers 9 434
[228] Yoon D G, Chin B D and Bail R 2017 Electrohydrodynamic spinning of random-textured silver webs for electrodes embedded in flexible organic solar cells J. Korean Phys. Soc. 70 598–605
[229] LeeY, MinSY, KimTS,JeongSH,Won JY, KimH, Xu W T, Jeong J K and Lee T W 2016 Versatile metal nanowiring platform for large-scale nano-and opto-electronic devices Adv. Mater. 28 9109–16
[230] Zhang H C et al 2021 3D printing of a PDMS cylindrical microlens array with 100% fill-factor ACS Appl. Mater. Interfaces 13 36295–306
[231] LiZH et al 2022 Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet Adv. Sci. 9 2105331
[232] LiHK et al 2022 3D printed high performance silver mesh for transparent glass heaters through liquid sacrificial substrate electric-field-driven jet Small 18 2270083
[233] Huang H, Zhang G, Li W, Yu Z, Peng Z, Wang F, Zhu X and Lan H 2022 The theoretical model and verification of electric-field-driven jet 3D printing for large-height and conformal micro/nano-scale parts Virtual Phys. Prototyp. 18 e2140440
[234] Zhang H C et al 2023 Microscale hybrid additive manufacturing of ultra-fine, embedded Cu/Ag(shell)-P4VP(core) grid for flexible transparent electrodes Adv. Mater. Technol. 8 2201580
[235] Hu J and Yu M F 2010 Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds Science 329 313–6
[236] Suryavanshi A P and Yu M F 2007 Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires Nanotechnology 18 105305
[237] Suh Y D, Kwon J, Lee J, Lee H, Jeong S, Kim D, Cho H, Yeo J and Ko S H 2016 Maskless fabrication of highly robust, flexible transparent cu conductor by random crack network assisted cu nanoparticle patterning and laser sintering Adv. Electron. Mater. 2 1600277
[238] Abbasi S A, Chai Z M and Busnaina A 2019 Scalable printing of high-resolution flexible transparent grid electrodes using directed assembly of silver nanoparticles Adv. Mater. Interfaces 6 1900898
[239] HuhJW, LeeDK,JeonHJandAhnCW2016New approach for fabricating hybrid-structured metal mesh films for flexible transparent electrodes by the combination of electrospinning and metal deposition Nanotechnology 27 475302
[240] Che G, Lakshmi B B, Martin C R, Fisher E R and Ruoff R S 1998 Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method Chem. Mater. 10 260–7
[241] Nikzad M J, Mohamadbeigi N, Sadrnezhaad S K and Mahdavi S M 2019 Fabrication of a highly flexible and affordable transparent electrode by aligned U-shaped copper nanowires using a new electrospinning collector with convenient transferability ACS Omega 4 21260–6
[242] Ciobotaru I C, Polosan S, Enculescu M, Nitescu A, Enculescu I, Beregoi M and Ciobotaru C C 2022 Charge transport mechanisms in free-standing devices with electrospun electrodes Nanotechnology 33 395203
[243] Hsu P C, Wang S, Wu H, Narasimhan V K, Kong D S, Ryoung Lee H and Cui Y 2013 Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires Nat. Commun. 4 2522
[244] Zhang L W, Wang K Q, Zhong L B, Liu Y, Wang X Z, Zhang D X, Guo Q Q and Qiu Y J 2022 A highly stable electrode with embedded structure formed through a catalytically oxidative decomposition mechanism Adv. Mater. Interfaces 9 2200672
[245] Ebadi S V, Fashandi H, Semnani D, Rezaei B and Fakhrali A 2020 Overcoming the potential drop in conducting polymer artificial muscles through metallization of electrospun nanofibers by electroplating process Smart Mater. Struct. 29 085036
[246] AnS,KimYI,JoHS,KimMW, LeeMW, YarinALand Yoon S S 2017 Silver-decorated and palladium-coated copper-electroplated fibers derived from electrospun polymer nanofibers Chem. Eng. J. 327 336–42
[247] SongRB,LiX,GuFY, FeiLF, MaQLandChai Y 2016 An ultra-long and low junction-resistance Ag transparent electrode by electrospun nanofibers RSC Adv. 6 91641–8
[248] Fuh Y K and Lien L C 2013 Pattern transfer of aligned metal nano/microwires as flexible transparent electrodes using an electrospun nanofiber template Nanotechnology 24 055301
[249] Shiratori S, Takenaka I, Kyung K, Bernasconi R, Testa A and Magagnin L 2015 “Nano Necklace” formed by electroless deposition of metal on polymer nanofiber for flexible transparent conducting films ECS Trans. 66 37–42
[250] LiuY, DuCN,LvXH,JiaZK,SunSMandYu JX2020 Synthesis of silver nanofiber transparent electrodes by silver mirror reaction with electrospun nanofiber template Compos. Interfaces 28 683–92
[251] LiP, ZhangW, MaJG,WangX,XuHY, CongLJand Liu Y C 2018 Solution-grown serpentine silver nanofiber meshes for stretchable transparent conductors Adv. Electron. Mater. 4 1800346
[252] Kim G H, Woo H, Kim S, An T and Lim G 2020 Highly-robust, solution-processed flexible transparent electrodes with a junction-free electrospun nanofiber network RSC Adv. 10 9940–8
[253] Dong H, Fey E, Gandelman A and Jones W E 2006 Synthesis and assembly of metal nanoparticles on electrospun poly(4-vinylpyridine) fibers and poly(4-vinylpyridine) composite fibers Chem. Mater. 18 2008–11
[254] Huang Y L, Baji A, Tien H W, Yang Y K, Yang S Y, Wu S Y, Ma C C M, Liu H Y, Mai Y W and Wang NH2012 Self-assembly of silver-graphene hybrid on electrospun polyurethane nanofibers as flexible transparent conductive thin films Carbon 50 3473–81
[255] Park S, Moon S C, Chen D, Farris R J and Russell T P 2010 Preparation of 1 inch gold nanowires from PS-b-P4VP block copolymers J. Mater. Chem. 20 1198–202
[256] LiP, WangX,MaJG,WangTF, ZhangW, XuHYand Liu Y C 2019 Interface engineering of solution-grown silver nanofiber networks designed as flexible transparent electrodes J. Mater. Chem. C 7 3924–33
[257] Tan C L et al 2015 Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials J. Am. Chem. Soc. 137 1565–71
[258] Peng W, Wang Y, Yang X X, Mao L C, Jin J H, Yang S L, Fu K and Li G 2020 Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery Appl. Catal. B 268 118437
[259] Elishav O et al 2022 Composite indium tin oxide nanofibers with embedded hematite nanoparticles for photoelectrochemical water splitting ACS Appl. Mater. Interfaces 14 41851–60
[260] Sanger A, Kang S B, Jeong M H, Kim C U, Baik J M and Choi K J 2019 All-transparent NO2 gas sensors based on freestanding Al-doped ZnO nanofibers ACS Appl. Electron. Mater. 1 1261–8
[261] Kang M G, Kim M S, Kim J and Guo L J 2008 Organic solar cells using nanoimprinted transparent metal electrodes Adv. Mater. 20 4408–13
[262] Hwang J K, Cho S, Dang J M, Kwak E B, Song K, Moon J and Sung M M 2010 Direct nanoprinting by liquid-bridge-mediated nanotransfer moulding Nat. Nanotechnol. 5 742–8
[263] Azuma K, Sakajiri K, Matsumoto H, Kang S, Watanabe J and Tokita M 2014 Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template Mater. Lett. 115 187–9
[264] Sun L F et al 2022 Low cost and facile fabrication of a micro-mold with high aspect ratio for transparent electrodes with metal mesh using micro-scale 3D printing Adv. Mater. Technol. 7 2200584
[265] Liu H Z, Zhang G H, Zheng X, Chen F J and Duan H G 2020 Emerging miniaturized energy storage devices for microsystem applications: from design to integration Int. J. Extreme Manuf. 2 042001
[266] Sun P R, Ma C A, Chen Y and Liu H L 2021 Flexible conducting composite film with reversible in-plane folding-unfolding property Adv. Sci. 8 2102314
[267] LiHK et al 2023 Electric field driven printing of repeatable random metal meshes for flexible transparent electrodes Opt. Laser Technol. 157 108730
[268] ZhuYX,MaoHW, ZhuY, ZhuL,ChenCS,WangXJ, Ke S, Fu C Y, Wan C J and Wan Q 2022 Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing IEEE Electron Device Lett. 43 651–4
[269] ZanGT, Wu T, DongWY, ZhouJC,Tu T, XuRX,ChenY, Wang Y and Wu Q S 2022 Two-level biomimetic designs enable intelligent stress dispersion for super-foldable C/NiS nanofiber free-standing electrode Adv. Fiber Mater. 4 1177–90
[270] YangJJ,ZiDH,ZhuXY, LiHK,LiZH,SunLF, Zhang G M, Wang F, Peng Z L and Lan H B 2022 Printed flexible transparent electrodes for harsh environments Adv. Mater. Technol. 7 2101087
[271] Kim S R, Yoo J H and Park J W 2019 Using electrospun AgNW/P(VDF-TrFE) composite nanofibers to create transparent and wearable single-electrode triboelectric nanogenerators for self-powered touch panels ACS Appl. Mater. Interfaces 11 15088–96
[272] Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A and P.tschke P 2004 Carbon nanofibers for composite applications Carbon 42 1153–8
[273] PLC et al 2022 Electrospinning engineering enables high-performance sodium-ion batteries Adv. Fiber Mater. 4 43–65
[274] KimH,PyunKR,LeeMT, LeeHBandKo SH2022 Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures Adv. Funct. Mater. 32 2110535
[275] Zhou S Y, Kong X Y, Zheng B, Huo F W, Str.mme M and Xu C 2019 Cellulose nanofiber @ conductive metal organic frameworks for high performance flexible supercapacitors ACS Nano 13 9578–86
[276] Zhang P, Qiu J X, Zheng Z F, Liu G, Ling M, Martens W, Wang H H, Zhao H J and Zhang S Q 2013 Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries Electrochim. Acta 104 41–47
[277] Wang W, Yu A F, Zhai J Y and Wang Z L 2021 Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing Adv. Fiber Mater. 3 394–412
[278] LIyl et al 2022 Synergy of MXene with se infiltrated porous N-doped carbon nanofibers as janus electrodes for high-performance sodium/lithium-selenium batteries Adv. Energy Mater. 12 2200894
[279] LiuHZ,LiJH,ZhangXN,LiuXX,Yan Y, ChenFJ, Zhang G H and Duan H G 2021 Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-Ion batteries Adv. Funct. Mater. 31 2106550
[280] Li J, Zhong W, Deng Q, Zhang Q and Yang C 2022 Recent progress in synthesis and surface modification of nickel-rich layered oxide cathode materials for lithium-ion batteries Int. J. Extreme Manuf. 4 042004
[281] Liu L H, Cao K, Chen S F and Huang W 2020 Toward see-through optoelectronics: transparent light-emitting diodes and solar cells Adv. Opt. Mater. 8 2001122
[282] Azani M R, Hassanpour A and Torres T 2020 Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells Adv. Energy Mater. 10 2002536
[283] Zhang D, Alami A H and Choy W C H 2021 Recent progress on emerging transparent metallic electrodes for flexible organic and perovskite photovoltaics Sol. RRL 6 2100830
[284] Treat N D, Varotto A, Takacs C J, Batara N, Al-Hashimi M, Heeney M J, Heeger A J, Wudl F, Hawker C J and Chabinyc M L 2012 Polymer-fullerene miscibility: a metric for screening new materials for high-performance organic solar cells J. Am. Chem. Soc. 134 15869–79
[285] Li Y W, Xu G Y, Cui C H and Li Y F 2018 Flexible and semitransparent organic solar cells Adv. Energy Mater. 8 1701791
[286] Qiao F, Chu H Q, Xie Y and Weng Z K 2022 Recent progress of transparent conductive electrodes in the construction of efficient flexible organic solar cells Int. J. Energy Res. 46 4071–87
[287] Kang M G, Joon Park H, Hyun Ahn S and Guo L J 2010 Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells Sol. Energy Mater. Sol. Cells 94 1179–84
[288] Roman L S, Ingan.s O, Granlund T, Nyberg T, Svensson M, Andersson M R and Hummelen J C 2000 Trapping light in polymer photodiodes with soft embossed gratings Adv. Mater. 12 189–95
[289] O’Regan B and Gr.tzel M 1991 A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films Nature 353 737–40
[290] Shao L, Qian X, Li H M, Xu C and Hou L X 2017 Shape-controllable syntheses of ternary Ni-Co-Se alloy hollow microspheres as highly efficient catalytic materials for dye-sensitized solar cells Chem. Eng. J. 315 562–72
[291] HongSB,ParkSH,KimJH,LeeSY, Kwon YS,ParkT, Kang P H and Hong S C 2014 Triple-layer structured composite separator membranes with dual pore structures and improved interfacial contact for sustainable dye-sensitized solar cells Adv. Energy Mater. 4 1400477
[292] LiZX,LiuL,LiLD,QiWK,LaiWD,LiL,ZhaoXH, Liu S and Zhang W M 2021 In situ synthesis of ZnFe2O4 rough nanospheres on carbon nanofibers as an efficient titanium mesh substrate counter electrode for triiodide reduction in dye-sensitized solar cells Appl. Surf. Sci. 541 148429
[293] QiuJ,HeDY, WangH,LiWY, SunBL,MaYY, LuXF and Wang C 2021 Morphology-controlled fabrication of NiCo2S4 nanostructures decorating carbon nanofibers as low-cost counter electrode for efficient dye-sensitized solar cells Electrochim. Acta 367 137451
[294] Yu WD,LinWR,ShaoXF, HuZX,LiRCandYuan DS 2014 High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose J. Power Sources 272 137–43
[295] Lee Y, Chae S, Park H, Kim J and Jeong S H 2020 Stretchable and transparent supercapacitors based on extremely long MnO2/Au nanofiber networks Chem. Eng. J. 382 122798
[296] Cheng Y L, Huang L, Xiao X, Yao B, Yuan L Y, Li T Q, Hu Z M, Wang B, Wan J and Zhou J 2015 Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode Nano Energy 15 66–74
[297] Raza F, Ni X P, Wang J Q, Liu S F, Jiang Z, Liu C L, Chen H F, Farooq A and Ju A Q 2020 Ultrathin honeycomb-like MnO2 on hollow carbon nanofiber networks as binder-free electrode for flexible symmetric all-solid-state supercapacitors J. Energy Storage 30 101467
[298] Guan X, Pan L J and Fan Z 2021 Flexible, transparent and highly conductive polymer film electrodes for all-solid-state transparent supercapacitor applications Membranes 11 788
[299] ChenLF, HuangZH,LiangHW, Yao WT, Yu ZYand Yu S H 2013 Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose Energy Environ. Sci. 6 3331–8
[300] ZhangGH,ZhaoYL,HuJ,LiuHZ,ChenTW, Yu HHand Duan H G 2022 Freestanding ultralight metallic micromesh for high-energy density flexible transparent supercapacitors J. Mater. Chem. A 10 22182–93
[301] Liu Y et al 2015 Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors ACS Appl. Mater. Interfaces 7 23515–20
[302] Levitt A S, Alhabeb M, Hatter C B, Sarycheva A, Dion G and Gogotsi Y 2019 Electrospun MXene/carbon nanofibers as supercapacitor electrodes J. Mater. Chem. A 7 269–77
[303] Yan S H, Tang C G, Yang Z, Wang X M, Zhang H, Zhang C and Liu S X 2020 Hierarchical porous electrospun carbon nanofibers with nitrogen doping as binder-free electrode for supercapacitor J. Mater. Sci. Mater. Electron. 31 16247–59
[304] Zhao W W, Jiang M Y, Wang W K, Liu S J, Huang W and Zhao Q 2021 Flexible transparent supercapacitors: materials and devices Adv. Funct. Mater. 31 2009136
[305] Metz K M, Colavita P E, Tse K Y and Hamers R J 2012 Nanotextured gold coatings on carbon nanofiber scaffolds as ultrahigh surface-area electrodes J. Power Sources 198 393–401
[306] Kurtan U, Ayd.n H, Büyük B, S.ahintürk U, Almessiere M A and Baykal A 2020 Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode J. Energy Storage 32 101671
[307] HaoXX,BiJQ,WangWL,Yan WK,GaoXC,SunXN and Liu R 2020 Electrospun Fe2MoC/C nanofibers as an efficient electrode material for high-performance supercapacitors J. Power Sources 451 227802
[308] Wang L B and Hu X L 2020 Transparent electrodes for energy storage devices Batter. Supercaps 3 1275–86
[309] Zhang C and Nicolosi V 2019 Graphene and MXene-based transparent conductive electrodes and supercapacitors Energy Storage Mater. 16 102–25
[310] Kundu S, Mogera U, George S J and Kulkarni G U 2019 A planar supercapacitor made of supramolecular nanofibre based solid electrolyte exhibiting 8V window Nano Energy 61 259–66
[311] Haj Y A, Mousavihashemi S, Robertson D, Borghei M, P..kk.nen T, Rojas O J, Kontturi E, Kallio T and Vapaavuori J 2022 Biowaste-derived electrode and electrolyte materials for flexible supercapacitors Chem. Eng. J. 435 135058
[312] WangX,GaoKZ,ShaoZQ,PengXQ,Wu XandWangFJ 2014 Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications J. Power Sources 249 148–55
[313] Kim G H, Shin J H, An T and Lim G 2018 Junction-free flat copper nanofiber network-based transparent heater with high transparency, high conductivity, and high temperature Sci. Rep. 8 13581
[314] Yang Y et al 2020 Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding ACS Nano 14 8754–65
[315] Liang R H, Wang H Z, Zhan S, Ye M, Shu L L, Fei L F, WangD Y, ZhengR K and Ke S M2022 High-temperature flexible transparent heater for rapid thermal annealing of thin films Phys. Rev. Appl. 17 044049
[316] MaZL et al 2019 High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers ACS Nano 13 7578–90
[317] KimHJ,ChoiDI,LeeS,SungSK,KangDH,KimJand Kim Y 2021 Quick thermal response-transparent-wearable heater based on copper mesh/poly(vinyl alcohol) film Adv. Eng. Mater. 23 2100395
[318] LiuJP, XiaoL,RaoZF, DongBY, YinZPandHuangYA 2018 High-performance, micrometer thick/conformal, transparent metal-network electrodes for flexible and curved electronic devices Adv. Mater. Technol. 3 1800155
[319] KimT, KimYW, LeeHS,KimH,YangWSandSuhKS 2013 Uniformly interconnected silver-nanowire networks for transparent film heaters Adv. Funct. Mater. 23 1250–5
[320] Song L J, Wu C, Yu S H and Wang X H 2022 Flexible transparent conductive ZnSnO/Cu/ZnSnO multilayer films for flexible transparent heaters Mater. Lett. 312 131683
[321] Kim Y, Shin H, Han M S, Seo S, Lee W, Na J, Park C and Kim E 2017 Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer Adv. Funct. Mater. 27 1701192
[322] Wang Y Y, Wang S, Wang X J, Zhang W R, Zheng W X, Zhang Y M and Zhang S X A 2019 A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer Nat. Mater. 18 1335–42
[323] LiJS,LiJJ,LiHB,WangCC,ShengMF, ZhangLPand Fu S H 2021 Bistable elastic electrochromic ionic gels for energy-saving displays ACS Appl. Mater. Interfaces 13 27200–8
[324] Lerond M, Raj A M, Wu V, Skene W G and Cicoira F 2022 An intrinsically stretchable and bendable electrochromic device Nanotechnology 33 405706
[325] Dulgerbaki C, Maslakci N N, Komur A I and Oksuz A U 2018 Electrochromic strategy for tungsten oxide/polypyrrole hybrid nanofiber materials Eur. Polym. J. 107 173–80
[326] Noh J H, Radhakrishnan S, Lee K T, Ko T H and Kim B S 2021 Preparation and electrochromic properties of flexible transparent WO3/AgNW-decorated nanofiber composite film Funct. Compos. Struct. 3 045004
[327] Nogi M and Yano H 2008 Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry Adv. Mater. 20 1849–52
[328] Wang W, Wang S, Xiang C X, Xue D, Li M F, Liu Q Z, Piao L and Wang D 2022 Nanofiber-based transparent film with controllable optical transparency adjustment function for versatile bionic applications Nano Res. 15 564–72
[329] Wan F, Zhang L L, Dai X, Wang X Y, Niu Z Q and Chen J 2018 Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers Nat. Commun. 9 1656
[330] LiWW, GanL,GuoK,Ke LB,WeiYQ,LiHQ,ShenGZ and Zhai T Y 2016 Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries Nanoscale 8 8666–72
[331] Singh S B, Tran D T, Jeong K U, Kim N H and Lee J H 2022 A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable Zn-Ion battery Small 18 2104462
[332] WangR,ZhuXY, SunLF, ShangS,LiHK,GeWSand Lan H B 2021 Cost-effective fabrication of transparent strain sensors via micro-scale 3D printing and imprinting Nanomaterials 12 120
[333] Wang G et al 2018 Flexible pressure sensor based on PVDF nanofiber Sens. Actuators A 280 319–25
[334] Veeramuthu L et al 2019 Smart garment energy generators fabricated using stretchable electrospun nanofibers React. Funct. Polym. 142 96–103
[335] ParkSJ,LeeSH,YangH,ParkCS,LeeCS,Kwon OS, Park T H and Jang J 2016 Human dopamine receptor-conjugated multidimensional conducting polymer nanofiber membrane for dopamine detection ACS Appl. Mater. Interfaces 8 28897–903
[336] Park M, Im J, Park J J and Jeong U 2013 Micropatterned stretchable circuit and strain sensor fabricated by lithography on an electrospun nanofiber mat Appl. Mater. Interfaces 5 8766–71
[337] Liu J, Zhang L, Wang N, Zhao H and Li C Z 2022 Nanofiber-reinforced transparent, tough, and self-healing substrate for an electronic skin with damage detection and program-controlled autonomic repair Nano Energy 96 107108
[338] ZhuMM,ZhaoAW, WeiC,RenFY, ZhaoYD,BaoYP and Guo H L 2022 Hybrid graphene-NiW nanofiber transparent electrodes for all-nanofiber-based pressure sensor J. Mater. Sci. 57 2627–35
[339] Wang R et al 2023 Carbon nanotube-based strain sensors: structures, fabrication, and applications Adv. Mater. Technol. 8 2200855
[340] Ren H Y et al 2019 Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors ACS Nano 13 5541–8
[341] Ahmed A, Jia Y M, Huang Y, Khoso N A, Deb H, Fan Q G and Shao J Z 2019 Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor J. Mater. Sci. Mater. Electron. 30 14007–21
[342] Mandal D, Henkel K and Schmei.er D 2014 Improved performance of a polymer nanogenerator based on silver nanoparticles doped electrospun P(VDF-HFP) nanofibers Phys. Chem. Chem. Phys. 16 10403–7
[343] Huang K L et al 2022 Flexible intelligent array patch based on synergy of polyurethane and nanofiber for sensitive monitor and smart treatment Chem. Eng. J. 443 136378
[344] YangG,TangXC,ZhaoGD,LiYF, MaCQ,ZhuangXP and Yan J 2022 Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications Chem. Eng. J. 435 135004
[345] Li Q Q, Wang G K, Liang Z X and Hu Z J 2022 Highly transparent and adhesive poly(vinylidene difluoride) films for self-powered piezoelectric touch sensors Chin. J. Polym. Sci. 40 726–37
[346] Kim K et al 2018 Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers Nano Energy 48 275–83
[347] Rivadeneyra A, Marín-Sánchez A, Wicklein B, Salmerón J F, Castillo E, Bobinger M and Salinas-Castillo A 2021 Cellulose nanofibers as substrate for flexible and biodegradable moisture sensors Compos. Sci. Technol. 208 108738