[1] Li X B, Jiang B T, Yang Y B et al. A survey on object detection technology in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 40, 95-104(2019).
[2] Felzenszwalb P F, Girshick R B, McAllester D et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1627-1645(2010).
[3] Zhu C R, Zhou H, Wang R S et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 3446-3456(2010).
[4] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[5] He K M, Gkioxari G, Dollar P et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 386-397(2020).
[6] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer Vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).
[7] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767
[9] Chen L Q, Shi W X, Deng D X. Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images[J]. Remote Sensing, 13, 660(2021).
[10] Xie J Z, Peng H, Tang J F et al. Improved YOLOv4 for dense remote sensing target detection[J]. Computer Engineering and Applications, 57, 247-256(2021).
[11] Zhang X, Zhang Y Q, He B et al. Research on remote sensing image aircraft target detection technology based on YOLOv4-tiny[J]. Optical Technique, 47, 344-351(2021).
[12] Wang W F, Jin J, Chen J M. Rapid detection algorithm for small objects based on receptive field block[J]. Laser & Optoelectronics Progress, 57, 021501(2020).
[13] Sun J, Guo D B, Yang T T et al. Real-time object detection based on improved YOLOv3 network[J]. Laser & Optoelectronics Progress, 57, 221505(2020).
[14] Sandler M, Howard A, Zhu M L et al. MobileNetV2: inverted residuals and linear bottlenecks[C], 4510-4520(2018).
[15] He K M, Zhang X Y, Ren S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).
[16] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).
[17] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).
[18] Liu S, Di H, Wang Y. Receptive field block net for accurate and fast object detection[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11215, 385-400(2018).
[19] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
[20] Long Y, Gong Y P, Xiao Z F et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 2486-2498(2017).
[21] Zou Z X, Shi Z W. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 27, 1100-1111(2018).
[22] Li K, Wan G, Cheng G et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).
[23] Everingham M, Gool L, Williams C K I et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 88, 303-338(2010).
[24] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[25] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).