• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1703001 (2023)
Yinlong Guo1, Xinyu Nie1, Jinhong Li1, Xianmei Qian2..., Wenyue Zhu2 and Jing Wang1,*|Show fewer author(s)
Author Affiliations
  • 1School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi , China
  • 2Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • show less
    DOI: 10.3788/LOP222216 Cite this Article Set citation alerts
    Yinlong Guo, Xinyu Nie, Jinhong Li, Xianmei Qian, Wenyue Zhu, Jing Wang. Self-Healing Properties of Twisted Elliptical Gaussian Schell-Model Beams[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1703001 Copy Citation Text show less

    Abstract

    In this study, the analytical expression of field distribution of twisted elliptical Gaussian Schell-Model beams after they pass through a Gaussian absorption-type obstacle is derived based on the Collins formula, and a basic twisted-beam model is obtained that effectively enhances the beam's self-healing capability. The effects of the light source parameters on the beam's self-healing properties are analyzed. The laws of intensity, coherence, and orbital angular momentum flux density transmitted when partially blocked by obstacles and the intrinsic connection among the three quantities are revealed. The intrinsic self-healing properties of twisted beams are explained. It is shown that appropriately reducing the coherence length and twist factor can enhance the beam's self-healing capability while preserving the characteristics of the twisted beam. The findings can help optimize the overall performance of partially coherent light transmission in free space, thus enhancing potential applications in free space optical communication, LIDAR, remote sensing imaging, and other fields.
    W(r1,r2,0)=exp-r1x2+r2x24wx2-r1y2+r2y24wy2×exp-(r1-r2)22δ02×exp-ikμr1xr2y-r2xr1y
    W(ρ1,ρ2,z)=1λ2B2W(r1,r2,0)T*r1Tr2×exp-ik2B(Ar12+Dρ12-2r1ρ1)×expik2B(Ar22+Dρ22-2r2ρ2)dr1dr2,
    T*r1Tr2Tr1+r22=1-exp-r1+r224wd2
    W(ρ1,ρ2,z)=π2λ2B2X1+Y1+Y1--M11N1-M12expiDk2Bρ22-ρ12-u124X1+-v124Y1+×expP112-v22-2iP11v24Y1--M11+P132-u22-2iP13u24N1-M12-2π2λ2B2X2+Y2+Y2--M21N2-M22×expiDk2Bρ22-ρ12-u124X2+-v124Y2+×expP212-v22-2iP21v24Y2--M21+P232-u22-2iP23u24N2-M22+π2λ2B2X3+Y3+Y3--M31N3-M32expiDk2Bρ22-ρ12-u124X3+-v124Y3+×expP312-v22-2iP31v24Y3--M31+P332-u22-2iP33u24N3-M32,
    u1=kρ1xB; u2=kρ2xB; v1=kρ1yB; v2=kρ2yB; T=1δ02-12wd2;X1±=14wx2+12δ02±iAk2B; Y1±=14wy2+12δ02±iAk2B;X2±=14wx2+12δ02+14wd2±iAk2B; Y2±=14wy2+12δ02+14wd2±iAk2B;X3±=14wx2+12δ02+12wd2±iAk2B; Y3±=14wy2+12δ02+12wd2±iAk2B; η1=ikμ2Y1+δ02-ikμ2X1+δ02; η2=Tikμ2Y2+-ikμ2X2+; η3=T-12wd2ikμ2Y3+-ikμ2X3+;M11=14Y1+δ04-k2μ24X1+; M12=14X1+δ04-k2μ24Y1+; M31=14Y3+T-12wd22-k2μ24X3+;M21=T24Y2+-k2μ24X2+; M22=T24X2+-k2μ24Y2+; M32=14X3+T-12wd22-k2μ24Y3+;P11=iv12Y1+δ02+kμu12X1+; P12=iu12X1+δ02-kμv12Y1+; P31=iv12Y3+T-12wd2+kμu12X3+;P21=iTv12Y2++kμu12X2+; P22=iTu12X2+-kμv12Y2+; P32=iu12X3+T-12wd2-kμv12Y3+;Nq=Xq--ηq24Yq--Mq1, Pq3=Pq1ηq-iv2ηq2Yq--Mq1+Pq2, q=1, 2, 3
    S(ρ)=W(ρ,ρ)
    η(ρ1,ρ2)=W(ρ1,ρ2)W(ρ1,ρ1)W(ρ2,ρ2)
    O(ρ,z)=-ε0kIm[ρ1yρ2xW(ρ1,ρ2,z)-ρ1xρ2yW(ρ1,ρ2,z)]ρ1=ρ2=ρ
    ABCD=1z0110-1/f1=1-z/fz-1/f1
    Yinlong Guo, Xinyu Nie, Jinhong Li, Xianmei Qian, Wenyue Zhu, Jing Wang. Self-Healing Properties of Twisted Elliptical Gaussian Schell-Model Beams[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1703001
    Download Citation