[1] Wang A L, Wang S R, Lin H et al. Recent advances and critical challenges of perovskite solar cells[J]. Journal of the Chinese Ceramic Society, 49, 1306-1322(2021).
[2] Fang H H, Li X Z, Zhou Y K et al. Ultrafast spectroscopy of hot carriers in perovskites[J]. Acta Optica Sinica, 41, 0823009(2021).
[3] Valadi K, Gharibi S, Taheri-Ledari R et al. Metal oxide electron transport materials for perovskite solar cells: a review[J]. Environmental Chemistry Letters, 19, 2185-2207(2021).
[4] Min H, Lee D Y, Kim J et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 598, 444-450(2021).
[5] Jiang Y, Chen C, Gong Z M et al. Optimization strategy of interface materials for perovskite solar cells[C], 64(2021).
[6] Duan J S, Peng L P, Yu H Y et al. Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 39, 1890-1906(2022).
[7] Kim D, Shin I, Yang H S et al. Enhancement in charge extraction and moisture stability of perovskite solar cell via infiltration of charge transport material in grain boundaries[J]. Journal of Power Sources, 506, 230212(2021).
[8] Xiao K. Efficient and stable organic-inorganic hybrid perovskite solar cells based on inverted planar structure[D](2018).
[9] Cui X. Fabrication of highly efficient NiOx-based perovskite solar cell[D](2021).
[10] Chen R. P-type materials applied in inverted perovskite solar cells[D](2018).
[11] Chen W B. Research on inverted planar perovskite solar cells with PTAA as hole transport layer[D](2018).
[12] Wang Z W. High efficiency and stable inverted perovskite solar cells were prepared based on doping technology[D](2021).
[13] Chen H. Highly efficient inverted structure perovskite solar cells[D](2020).
[14] Tu Y X. Preparation of inverted perovskite solar cells based on CuPc hole transport layer[D](2019).
[15] Chen W, Shi Y Q, Wang Y et al. N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86%[J]. Nano Energy, 68, 104363(2020).
[16] Lin X S, Cui D Y, Luo X H et al. Efficiency progress of inverted perovskite solar cells[J]. Energy & Environmental Science, 13, 3823-3847(2020).
[17] Hao H. Research on surface plasmon-enhanced inverted perovskite solar cells[D](2018).
[18] Qureshi A A, Javed H M A, Javed S et al. Incorporation of Zr-doped TiO2 nanoparticles in electron transport layer for efficient planar perovskite solar cells[J]. Surfaces and Interfaces, 25, 101299(2021).
[19] Wu S F, Zhang J, Li Z et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells[J]. Joule, 4, 1248-1262(2020).
[20] Arkan E, Yalcin E, Unal M et al. Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell[J]. Materials Chemistry and Physics, 254, 123435(2020).
[21] Tang X. Preparation and performance optimization of inverted perovskite solar cell[D](2018).
[22] Tian L, Hu Z C, Liu X C et al. Fluoro- and amino-functionalized conjugated polymers as electron transport materials for perovskite solar cells with improved efficiency and stability[J]. ACS Applied Materials & Interfaces, 11, 5289-5297(2019).
[23] Cui J, Meng F P, Zhang H et al. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide[J]. ACS Applied Materials & Interfaces, 6, 22862-22870(2014).
[24] Chen R, Wang W, Bu T et al. Low-cost fullerene derivative as an efficient electron transport layer for planar perovskite solar cells[J]. Acta Physico-Chimica Sinica, 35, 401-407(2019).
[25] Liu Z. Study on the performance of trans-perovskite solar cells based on NiOx interface modification[D](2019).
[26] Zhang X R. Study on additives and interfacial layer materials in methylamine-formamidine perovskite solar cells[D](2019).
[27] Zheng T, Fan B, Zhao Y et al. Tailored conductive fullerenes-based passivator for efficient and stable inverted perovskite solar cells[J]. Journal of Colloid and Interface Science, 598, 229-237(2021).
[28] Liu T L. Modification of surface and bulk for perovskite layer in inverted perovskite solar cells[D](2019).
[29] Shibayama N, Kanda H, Kim T W et al. Design of BCP buffer layer for inverted perovskite solar cells using ideal factor[J]. APL Materials, 7, 031117(2019).
[30] Wang Y, Duan C H, Li J S et al. Performance enhancement of inverted perovskite solar cells based on smooth and compact PC61BM∶SnO2 electron transport layers[J]. ACS Applied Materials & Interfaces, 10, 20128-20135(2018).
[31] Troughton J, Neophytou M, Gasparini N et al. A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices[J]. Energy & Environmental Science, 13, 268-276(2020).
[32] Bai Y, Yu H, Zhu Z L et al. High performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layer[J]. Journal of Materials Chemistry A, 3, 9098-9102(2015).
[33] Kuang C Y, Tang G, Jiu T G et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Letters, 15, 2756-2762(2015).
[34] Tsikritzis D, Rogdakis K, Chatzimanolis K et al. A two-fold engineering approach based on Bi2Te3 flakes towards efficient and stable inverted perovskite solar cells[J]. Materials Advances, 1, 450-462(2020).
[35] Chavan R D, Prochowicz D, Bończak B et al. Azahomofullerenes as new n-type acceptor materials for efficient and stable inverted planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 13, 20296-20304(2021).
[36] Jia J B, Wu J H, Dong J et al. Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells[J]. Chemical Communications, 54, 3170-3173(2018).
[37] Fang R, Zhang W J, Zhang S S et al. The rising star in photovoltaics-perovskite solar cells: the past, present and future[J]. Science China Technological Sciences, 59, 989-1006(2016).
[38] Wang D Z, Ye T L, Zhang Y. Recent advances of non-fullerene organic electron transport materials in perovskite solar cells[J]. Journal of Materials Chemistry A, 8, 20819-20848(2020).
[39] Wu J L, Huang W K, Chang Y C et al. Simple mono-halogenated perylene diimides as non-fullerene electron transporting materials in inverted perovskite solar cells with ZnO nanoparticle cathode buffer layers[J]. Journal of Materials Chemistry A, 5, 12811-12821(2017).
[40] Yang Y, Yang X L, He L H et al. Quasi-two-dimensional sky-blue perovskite light-emitting devices enhanced by hypophosphorous acid incorporation[J]. Acta Optica Sinica, 41, 1716001(2021).
[41] Ding N, Wang N, Liu S et al. Research progress on doped perovskite materials[J]. Laser&Optoelectronics Progress, 58, 1516011(2021).
[42] Ermanova I, Nia N Y, Lamanna E et al. Crystal engineering approach for fabrication of inverted perovskite solar cell in ambient conditions[J]. Energies, 14, 1751(2021).
[43] Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 501, 395-398(2013).
[44] Huang Y L, Liu T H, Liang C et al. Towards simplifying the device structure of high-performance perovskite solar cells[J]. Advanced Functional Materials, 30, 2000863(2020).
[45] Liu T H, Chen K, Hu Q et al. Inverted perovskite solar cells: progresses and perspectives[J]. Advanced Energy Materials, 6, 1600457(2016).
[46] Elseman A M, Xu C Y, Yao Y et al. Electron transport materials: evolution and case study for high-efficiency perovskite solar cells[J]. Solar RRL, 4, 2000136(2020).
[47] Song J X, Yin X X, Li Z F et al. Low-temperature-processed metal oxide electron transport layers for efficient planar perovskite solar cells[J]. Rare Metals, 40, 2730-2746(2021).
[48] Zhang H Y. Optimizing the fabrication process of inverted planar perovskite solar cell devices[D](2019).
[49] Liu H R. New fullerene derivatives electron transport layer and interface modification layer for perovskite solar cells[D](2019).
[50] Wang Y X, Long X Y, Long W. Research progress of perovskite solar cells with inverted plane structure(p-i-n)[J]. Journal of Synthetic Crystals, 47, 1500-1505(2018).
[51] Li L W. Preparation and modification of inverted structured perovskite solar cell devices[D](2019).
[52] Chen L J, Wang G, Niu L B et al. High performance planar p-i-n perovskite solar cells based on a thin Alq3 cathode buffer layer[J]. RSC Advances, 8, 15961-15966(2018).
[53] Qiu L B, Deng J, Lu X et al. Integrating perovskite solar cells into a flexible fiber[J]. Angewandte Chemie, 53, 10425-10428(2014).
[54] Pedesseau L, Jancu J M, Rolland A et al. Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications[J]. Optical and Quantum Electronics, 46, 1225-1232(2014).
[55] Said A A, Xie J, Zhang Q C. Recent progress in organic electron transport materials in inverted perovskite solar cells[J]. Small, 15, e1900854(2019).
[56] Wang H L, Yang F, Li N et al. Interface engineering with a novel n-type small organic molecule for efficient inverted perovskite solar cells[J]. Chemical Engineering Journal, 392, 123677(2020).
[57] Yang Y, Zhu C T, Lin F Y et al. Research progress of inverted perovskite solar cells[J]. Acta Chimica Sinica, 77, 964-976(2019).
[58] Hsu H L, Hsiao H T, Juang T Y et al. Carbon nanodot additives realize high-performance air-stable p-i-n perovskite solar cells providing efficiencies of up to 20.2%[J]. Advanced Energy Materials, 8, 1802323(2018).
[59] Li X D, Zhang W X, Guo X M et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells[J]. Science, 375, 434-437(2022).
[60] Jeng J Y, Chiang Y F, Lee M H et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 25, 3727-3732(2013).
[61] Chiang C H, Tseng Z L, Wu C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process[J]. Journal of Materials Chemistry A, 2, 15897-15903(2014).
[62] Xia F, Wu Q L, Zhou P C et al. Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer[J]. ACS Applied Materials & Interfaces, 7, 13659-13665(2015).
[63] Zhu Z L, Xue Q F, He H X et al. A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance[J]. Advanced Science, 3, 1500353(2016).
[64] Xing Y, Sun C, Yip H L et al. New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells[J]. Nano Energy, 26, 7-15(2016).
[65] Zhu Z L, Bai Y, Liu X et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer[J]. Advanced Materials, 28, 6478-6484(2016).
[66] Xie X Y, Liu G C, Xu C Y et al. Improving the performance of inverted structured perovskite solar cells using bathocuproine[J]. Science Technology and Engineering, 17, 182-186(2017).
[67] Chen S S, Yang S W, Sun H et al. Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer[J]. Journal of Power Sources, 353, 123-130(2017).
[68] Lee K, Ryu J, Yu H et al. Enhanced efficiency and air-stability of NiOX-based perovskite solar cells via PCBM electron transport layer modification with Triton X-100[J]. Nanoscale, 9, 16249-16255(2017).
[69] Jiang Y Y, Li J, Xiong S X et al. Dual functions of interface passivation and n-doping using 2, 6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells[J]. Journal of Materials Chemistry A, 5, 17632-17639(2017).
[70] Wu F, Gao W, Yu H et al. Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells[J]. Journal of Materials Chemistry A, 6, 4443-4448(2018).
[71] Wang R, Qiao J H, He B Z et al. Electron extraction layer based on diketopyrrolopyrrole/isoindigo to improve the efficiency of inverted perovskite solar cells[J]. Journal of Materials Chemistry C, 6, 8429-8434(2018).
[72] Zhu L X, Chen C, Weng Y J et al. Enhancing the performance of inverted perovskite solar cells by inserting a ZnO∶TIPD film between PCBM layer and Ag electrode[J]. Solar Energy Materials and Solar Cells, 198, 11-18(2019).
[73] Luo Z H, Wu F, Zhang T et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability[J]. Angewandte Chemie, 58, 8520-8525(2019).
[74] Yang D, Zhang X R, Wang K et al. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers[J]. Nano Letters, 19, 3313-3320(2019).
[75] Meng W B. Effect of interface modification on the photovoltaic performance of inverted perovskite solar cells[D](2020).
[76] Wang Y, Yang Y, Uhlik F et al. Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer[J]. Organic Electronics, 78, 105573(2020).
[77] Zheng X Q. The theoretical and experimental study on improving stability of inverted perovskite solar cells[D](2020).
[78] Deng C B, Wan L, Li S et al. Naphthalene diimide based polymer as electron transport layer in inverted perovskite solar cells[J]. Organic Electronics, 87, 105959(2020).
[79] Lee P H, Wu T T, Tian K Y et al. Work-function-tunable electron transport layer of molecule-capped metal oxide for a high-efficiency and stable p-i-n perovskite solar cell[J]. ACS Applied Materials & Interfaces, 12, 45936-45949(2020).
[80] Patil P, Mann D S, Nakate U T et al. Hybrid interfacial ETL engineering using PCBM-SnS2 for High-Performance p-i-n structured planar perovskite solar cells[J]. Chemical Engineering Journal, 397, 125504(2020).
[81] Zheng X P, Hou Y, Bao C X et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature Energy, 5, 131-140(2020).
[82] Younes E M, Gurung A, Bahrami B et al. Enhancing efficiency and stability of inverted structure perovskite solar cells with fullerene C60 doped PC61BM electron transport layer[J]. Carbon, 180, 226-236(2021).
[83] An M W, Xing Z, Wu B S et al. Cross-linkable fullerene interfacial contacts for enhancing humidity stability of inverted perovskite solar cells[J]. Rare Metals, 40, 1691-1697(2021).
[84] Lee J, Tüysüz H. In‐depth comparative study of the cathode interfacial layer for a stable inverted perovskite solar cell[J]. ChemSusChem, 14, 2393-2400(2021).
[85] Lee J H, Jin I S, Jung J W. Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability[J]. Chemical Engineering Journal, 420, 129678(2021).
[86] Xu R G, Wang Z F, Xu W Z et al. Dual functional polymer dopant-passivant boosted electron transport layer for high-performance inverted perovskite solar cells[J]. Solar RRL, 5, 2100236(2021).
[87] Degani M, An Q Z, Albaladejo-Siguan M et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification[J]. Science Advances, 7, eabj7930(2021).
[88] Younes E M, Gurung A, Bahrami B et al. Highly efficient electron transport based on double-layered PC61BM in inverted perovskite solar cells[J]. Organic Electronics, 100, 106391(2022).
[89] Kim S S, Bae S, Jo W H. A perylene diimide-based non-fullerene acceptor as an electron transporting material for inverted perovskite solar cells[J]. RSC Advances, 6, 19923-19927(2016).
[90] Gu P Y, Wang N, Wu A Y et al. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells[J]. Chemistry, 11, 2135-2138(2016).
[91] Tan F R, Xu W Z, Hu X D et al. Highly efficient inverted perovskite solar cells with CdSe QDs/LiF electron transporting layer[J]. Nanoscale Research Letters, 12, 614(2017).
[92] Shaikh D B, Said A A, Bhosale D R S et al. Dithiafulvenyl-naphthalenediimide-based small molecules as efficient non-fullerene electron-transport layer for inverted perovskite solar cells[J]. Asian Journal of Organic Chemistry, 7, 2294-2301(2018).
[93] Jiang K, Wu F, Yu H et al. A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells[J]. Journal of Materials Chemistry A, 6, 16868-16873(2018).
[94] Ren C, He Y, Li S et al. Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells[J]. Organic Electronics, 70, 292-299(2019).
[95] Kim H I, Kim M J, Choi K et al. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer[J]. Advanced Energy Materials, 8, 1702872(2018).
[96] Chen C, Li H P, Ding X D et al. Molecular engineering of triphenylamine-based non-fullerene electron-transport materials for efficient rigid and flexible perovskite solar cells[J]. ACS Applied Materials & Interfaces, 10, 38970-38977(2018).
[97] Jung S K, Heo J H, Lee D W et al. Nonfullerene electron transporting material based on naphthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%[J]. Advanced Functional Materials, 28, 1800346(2018).
[98] Liu X H, Li X D, Zou Y et al. Energy level-modulated non-fullerene small molecule acceptors for improved VOC and efficiency of inverted perovskite solar cells[J]. Journal of Materials Chemistry A, 7, 3336-3343(2019).
[99] Xie L S, Wang J W, Liao K J et al. Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells[J]. Journal of Materials Chemistry A, 7, 18626-18633(2019).
[100] Yang B P, Ma R M, Wang Z S et al. Efficient gradient potential top electron transport structures achieved by combining an oxide family for inverted perovskite solar cells with high efficiency and stability[J]. ACS Applied Materials & Interfaces, 13, 27179-27187(2021).
[101] Yang Y, Luo Y, Ma S P et al. Advances of electron transport materials in perovskite solar cells: synthesis and application[J]. Progress in Chemistry, 33, 281-302(2021).
[102] Feng L, Han D W, Yuan Q et al. Proceedings of the 8th Symposium on new solar material science and technology[C], 508-509(2021).
[103] Deng Y K. The development of highly efficient inverted planar heterojunction perovskite solar cell[D](2019).
[104] Wang Y S, Ju H, Mahmoudi T et al. Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency[J]. Nano Energy, 88, 106285(2021).
[105] Dehghan N, Behjat A, Zare H R et al. Modification of electron-transport layers with mixed RGO/C60 additive to boost the performance and stability of perovskite solar cells: a comparative study[J]. Optical Materials, 119, 111313(2021).
[106] Jiang M. The research of the effect of interface modification on the performance of perovskite solar cell devices[D](2020).
[107] Zhang G P, Ding M Q, Guo P Z. Research progress of metal oxide electron transport layer in perovskite cells[J]. Yunnan Chemical Technology, 48, 1-3(2021).
[108] Xing Z, Li S H, Deng L L et al. Abstracts of the 5th Symposium on new solar cells: perovskite solar cells[C](2018).
[109] Tang J W. Theoretical investigation on some electron transporting materials in perovskite solar cell[D](2021).
[110] Liu G C. Study on the materials designing of charge transfer layer and device performance optimization for perovskite solar cells[D](2020).