• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1028009 (2023)
tao Guo1,2, jingbo Wei2, and wenchao Tang1,*
Author Affiliations
  • 1Institute of Space Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
  • 2School of Information Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
  • show less
    DOI: 10.3788/LOP213003 Cite this Article Set citation alerts
    tao Guo, jingbo Wei, wenchao Tang. Oilseed Rape Yield Estimation Based on the WOFOST Model and Remote Sensing Data[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028009 Copy Citation Text show less
    Ground test plot
    Fig. 1. Ground test plot
    LAI assimilation results of Jingzhou city in 2015
    Fig. 2. LAI assimilation results of Jingzhou city in 2015
    Classification results of GF-1 WFV image in Yangxin county in 2019.(a) GF-1 WFV image of Yangxin county in April 2019; (b) classification results of GF-1 WFV images based on pyramidal bottleneck residual network
    Fig. 3. Classification results of GF-1 WFV image in Yangxin county in 2019.(a) GF-1 WFV image of Yangxin county in April 2019; (b) classification results of GF-1 WFV images based on pyramidal bottleneck residual network
    Comparison of rape extraction results and statistical yearbook
    Fig. 4. Comparison of rape extraction results and statistical yearbook
    Comparison of rapeseed yield estimation results and statistical yearbook
    Fig. 5. Comparison of rapeseed yield estimation results and statistical yearbook
    Study areaWeather station location
    ZhongxiangN31°6′00″,E112°20′24″
    MachengN31°6′36″,E115°0′36″
    JianliN29°30′00″,E112°32′24″
    JiayuN29°35′24″,E113°33′00″
    JingzhouN30°12′36″,E112°5′23″
    YangxinN29°30′36″,E115°7′11″
    Table 1. Study area and weather station locations
    Coverage areaNumber of images
    Jingzhou4
    Macheng2
    Zhongxiang2
    Wuxue2
    Jiayu4
    Table 2. GF-1 WFV image information for model construction
    Get timeGrowth period
    2015-01-22bolting stage
    2015-03-12flowering stage
    2016-02-03bolting stage
    2016-03-19flowering stage
    2018-02-06bolting stage
    2018-03-28flowering stage
    2019-01-17bolting stage
    2019-04-01flowering stage
    2020-01-29bolting stage
    2020-03-18flowering stage
    Table 3. GF-1 WFV image information of Yangxin County for model validation
    YearDayMinimum temperature /℃Maximum temperature /℃Average air pressure /PaSunshine time /hRainfall /mmAverage wind speed /(m·s-1
    201715.29.8101521.9015
    201726.78.6101582.53.714
    201733.36.7102023.213.513
    20174-0.33.3101873.635.116
    20175-1.21.3101922.3029
    201761.12.5101403.24.424
    20177-0.71.7101522.81.324
    20178-0.57102103.40.122
    20179-210.1102174.2022
    201710-1.310.7102372.2027
    201711-1.210.8102532.8020
    201712-29.2102573016
    2017130.58.8102122.6023
    201714213.8101652028
    2017153.410.4101261.5023
    2017165.89101151.72.225
    2017174.912101152.109
    20171849101522.6017
    2017194.87101751.82.820
    2017205.27.7101480.73.825
    2017216.17.4101302.112.115
    2017223.712.5101222.8027
    2017233.98.5101394026
    2017242.24101464.37.427
    201725-1.82.2101774.81417
    201726-2.5-0.9102323.73.423
    201727-2.8-0.8101853.611.518
    201728-3.8-1.3102252.90.823
    201729-5.61.2102481.6032
    201730-5.42.8102152.2028
    Table 4. Data information of weather station in Jiayu county in the first 30 days of 2017
    IndexSeedling stageBolting stageFlowering stagePod stageBolting stage+flowering stage
    R20.210.700.590.840.72
    SE /(kg·hm-2764475561352424
    Table 5. Coefficient of determination R2 and standard error (SE) of estimated yield of rapeseed LAI in the four growing periods
    Vegetation indexFormula
    NDVIρNIRρred/ρNIR+ρred
    VARIgreenρgreenρred/ρgreen+ρred
    MSAVI[2RNIR+1-(2RNIR+1)2-8(RNIR-Rred)]/2
    EVI22.5×ρNIR-ρred/1+ρNIR+2.4×ρred
    SRρNIR/ρred
    Table 6. Vegetation index used in study
    Inversion modelVegetation indexDecisive factor R2Period
    NDVIy = -2.1076x2+ 4.6991x + 1.48820.7498bolting stage
    VARIgreeny = 3.6302x + 2.92150.6917bolting stage
    MSAVIy = 2.8876x + 1.37870.746bolting stage
    EVIy = -1.0104x2+ 2.9926x + 1.44820.7602bolting stage
    SRy = -0.2229x2+ 1.7857x + 0.11910.8209bolting stage
    NDVIy = 5.3612x2- 4.5728x + 4.32070.1384flowering stage
    VARIgreeny = -61.405x2+ 19.333x + 2.73070.7708flowering stage
    MSAVIy = 14.342x2- 18.852x + 9.55920.154flowering stage
    EVIy = 0.7645x + 2.65080.1282flowering stage
    SRy = -0.0384x2+ 0.5389x + 2.03730.1508flowering stage
    Table 7. Vegetation index and LAI
    YearIllustrated data /km2Classification data /km2Illustrated output /tForecast output /tError rate total output /%
    201516.8217.363239334142.535.4
    201616.4415.673337231420.02-5.8
    20181515.483539736037.111.7
    201917.6618.163708636064.742.7
    202018.317.673962241210.174.0
    Table 8. Comparison of rapeseed yield estimated results and statistical yearbook
    tao Guo, jingbo Wei, wenchao Tang. Oilseed Rape Yield Estimation Based on the WOFOST Model and Remote Sensing Data[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028009
    Download Citation