• Laser & Optoelectronics Progress
  • Vol. 60, Issue 11, 1106015 (2023)
Qihao Hu, Xiaoqian Zhu, Lina Ma*, Yue Qi..., Fan Shang and Yujie Bian|Show fewer author(s)
Author Affiliations
  • College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/LOP223405 Cite this Article Set citation alerts
    Qihao Hu, Xiaoqian Zhu, Lina Ma, Yue Qi, Fan Shang, Yujie Bian. Advances in Passive-Interferometric Type Fiber Bragg Grating-Based Hydrophones[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106015 Copy Citation Text show less
    References

    [1] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).

    [2] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 15, 1277-1294(1997).

    [3] Kersey A D, Davis M A, Patrick H J et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 15, 1442-1463(1997).

    [4] Ma L N. Fiber laser hydrophone[D](2010).

    [5] Takahashi N, Yoshimura K, Takahashi S et al. Development of an optical fiber hydrophone with fiber Bragg grating[J]. Ultrasonics, 38, 581-585(2000).

    [6] Rosenthal A, Razansky D, Ntziachristos V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating[J]. Optics Letters, 36, 1833-1835(2011).

    [7] Zhang W T, Liu Y L, Li F. Fiber Bragg grating hydrophone with high sensitivity[J]. Chinese Optics Letters, 6, 631-633(2008).

    [8] Kersey A D, Berkoff T A, Morey W W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection[J]. Electronics Letters, 28, 236-238(1992).

    [9] Berkoff T A, Kersey A D. Experimental demonstration of a fiber Bragg grating accelerometer[J]. IEEE Photonics Technology Letters, 8, 1677-1679(1996).

    [10] Weis R S, Bachim B L. Source-noise-induced resolution limits of interferometric fibre Bragg grating sensor demodulation systems[J]. Measurement Science and Technology, 12, 782-785(2001).

    [11] Kersey A D, Berkoff T A, Morey W W. Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection[J]. Optics Letters, 18, 72-74(1993).

    [12] Cranch G A, Flockhart G M H, Kirkendall C K. Time division multiplexing of fiber Bragg grating sensors using a mode-locked fiber laser source[J]. Proceedings of SPIE, 5855, 238-241(2005).

    [13] Jiang Y, Huang J B. Wavelength division multiplex based on fiber optical vibration sensor array[J]. Chinese Journal of Lasers, 32, 1525-1528(2005).

    [14] Cooper D J, Coroy T, Smith P W. Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays[J]. Applied Optics, 40, 2643-2654(2001).

    [15] Zaidi F, Nannipieri T, Signorini A et al. High performance time domain FBG dynamic interrogation scheme based on pulse coding[J]. IEEE Photonics Technology Letters, 25, 460-463(2013).

    [16] Yan L S, Wu Z L, Zhang Z Y et al. High-speed FBG-based fiber sensor networks for semidistributed strain measurements[J]. IEEE Photonics Journal, 5, 7200507(2013).

    [17] Wang Y M, Gong J M, Dong B et al. A large serial time-division multiplexed fiber Bragg grating sensor network[J]. Journal of Lightwave Technology, 30, 2751-2756(2012).

    [18] Luo Z H, Wen H Q, Guo H Y et al. A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings[J]. Optics Express, 21, 22799-22807(2013).

    [19] Ma L N, Chen Y, Hu Z L et al. An interferometric phase shift fiber Bragg grating sensing system with greatly reduced background phase noise[J]. Chinese Optics Letters, 16, 090601(2018).

    [20] Li D M, Chen J, Ge H L et al. Water sound sensor using the optical fiber grating sensitivity enhanced through side pressure and end surface pulling[J]. Acta Optica Sinica, 32, 0506001(2012).

    [21] Cranch G A, Flockhart G M H, Kirkendall C K. Efficient fiber Bragg grating and fiber Fabry-Pérot sensor multiplexing scheme using a broadband pulsed mode-locked laser[J]. Journal of Lightwave Technology, 23, 3798-3807(2005).

    [22] Cranch G A, Flockhart G M H, Kirkendall C K. Efficient large-scale multiplexing of fiber Bragg grating and fiber Fabry-Perot sensors for structural health monitoring applications[J]. Proceedings of SPIE, 6179, 61790P(2006).

    [23] Cranch G A, Flockhart G M H, Kirkendall C K. Polarization properties of interferometrically interrogated fiber Bragg grating and tandem-interferometer strain sensors[J]. Journal of Lightwave Technology, 24, 1787-1795(2006).

    [24] Morey W W, Dunphy J R, Meltz G. Multiplexing fiber Bragg grating sensors (invited paper)[J]. Proceedings of SPIE, 1586, 216-224(1991).

    [25] Morey W W, Dunphy J R, Meltz G. Multiplexing fiber Bragg grating sensors[J]. Fiber and Integrated Optics, 10, 351-360(1991).

    [26] Baldwin C S, Yu M, Miller C E et al. Bragg-grating-based Fabry-Perot sensor system for acoustic measurements[J]. Proceedings of SPIE, 3670, 342-351(1999).

    [27] Kirkendall C, Barock T, Tveten A et al. Fiber optic towed arrays[J]. NRL Review, 121-123(2007).

    [28] Okawara C, Saijyou K. Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing[J]. Acoustical Science and Technology, 28, 39-42(2007).

    [29] Okawara C, Saijyou K. Fiber optic interferometric hydrophone using fiber Bragg grating with wavelength division multiplexing[J]. Acoustical Science and Technology, 29, 232-234(2008).

    [30] Rønnekleiv E, Waagaard O H, Nakstad H et al. Ocean bottom seismic sensing system[P].

    [31] Nakstad H, Kringlebotn J T. Realisation of a full-scale fibre optic ocean bottom seismic system[J]. Proceedings of SPIE, 7004, 700436(2008).

    [32] Kringlebotn J T, Nakstad H, Eriksrud M. Fibre optic ocean bottom seismic cable system: from innovation to commercial success[J]. Proceedings of SPIE, 7503, 75037U(2009).

    [33] Knudsen S, Havsgard G B, Berg A et al. Permanently installed high-resolution fiber optic 3C/4D seismic sensor systems for in-well imaging and monitoring applications[J]. Proceedings of SPIE, 5278, 51-55(2003).

    [34] Waagaard O H, Rønnekleiv E, Forbord S et al. Reduction of crosstalk in inline sensor arrays using inverse scattering[J]. Proceedings of SPIE, 7004, 70044Z(2008).

    [35] Rønnekleiv E, Waagaard O H, Thingbo D et al. Suppression of Rayleigh scattering noise in a TDM multiplexed interferometric sensor system[C](2008).

    [36] Guo H Y, Tang J G, Li X F et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 11, 030602(2013).

    [37] Wang C, Shang Y, Liu X H et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings[J]. Optics Express, 23, 29038-29046(2015).

    [38] Li Y, Qian L, Zhou C M et al. Multiple-octave-spanning vibration sensing based on simultaneous vector demodulation of 499 Fizeau interference signals from identical ultra-weak fiber Bragg gratings over 2.5 km[J]. Sensors, 18, 210(2018).

    [39] Xu Q N, Zhou C M, Fan D et al. Experimental study on ultra-weak fiber Bragg grating hydrophone arrays based on Fizeau interference[J]. Laser & Optoelectronics Progress, 56, 150602(2019).

    [40] Guo Z, Gao K, Yang H et al. 20-mm-diameter interferometric hydrophone towed array based on fiber Bragg gratings[J]. Acta Optica Sinica, 39, 1106003(2019).

    [41] Wang J J, Jiang D S, Xie G M et al. Research of the planar optical fiber Bragg grating hydrophone probe[J]. Acta Acustica, 32, 343-348(2007).

    [42] Tan B, Huang J B, Wang J H et al. A study on a sensitization configuration of FBG hydrophone unit[J]. Chinese Journal of Sensors and Actuators, 20, 2417-2420(2007).

    [43] Li D M, Zhang Z L, Sang W B et al. Experimental study on interferometric fiber grating hydrophone[J]. Acoustics and Electronics Engineering, 1-3, 8(2009).

    [44] Niu S L. Research on fiber Fabry-Perot hydrophone[D](2011).

    [45] Lin H Z. Study on key technologies of the fiber Bragg grating hydrophone array based on path-match interferometry[D](2013).

    [46] Niu S L, Hu Y M, Hu Z L et al. Fiber Fabry-Pérot hydrophone based on push-pull structure and differential detection[J]. IEEE Photonics Technology Letters, 23, 1499-1501(2011).

    [47] Yi L Y, Shen Y Q, Xu H X et al. Review of optic fiber hydrophones structure designing[J]. Mobile Communications, 43, 51-59(2019).

    [48] Tveten A B, Dandridge A, Davis C M et al. Fibre optic accelerometer[J]. Electronics Letters, 16, 854-856(1980).

    [49] Todd M D, Johnson G A, Althouse B A et al. Flexural beam-based fiber Bragg grating accelerometers[J]. IEEE Photonics Technology Letters, 10, 1605-1607(1998).

    [50] Mita A, Yokoi I. Fiber Bragg grating accelerometer for buildings and civil infrastructures[J]. Proceedings of SPIE, 4330, 479-486(2001).

    [51] Abushagur O M, Abushagur M A G, Narayanan K. Novel three-axes fiber Bragg grating accelerometer[J]. Proceedings of SPIE, 5877, 58770Z(2005).

    [52] Antunes P, Varum H, André P. Uniaxial fiber Bragg grating accelerometer system with temperature and cross axis insensitivity[J]. Measurement, 44, 55-59(2011).

    [53] Li Y Q, Li K, Liu G Y et al. A pre-relaxed FBG accelerometer using transverse forces with high sensitivity and improved resonant frequency[J]. Photonics Letters of Poland, 12, 4-6(2020).

    [54] Qin Y F. The structure design of fiber-optical F-P vector hydrophone[D](2009).

    [55] Dai W D. The research of fiber optic vector hydrophone based on fiber Bragg grating Fabry-Perot cavity[D](2017).

    [56] Jin M Q, Ge H L, Li D M et al. Three-component homovibrational vector hydrophone based on fiber Bragg grating F-P interferometry[J]. Applied Optics, 57, 9195-9202(2018).

    [57] Jin M Q, Ge H L, Zhang Z L. The optimal design of a 3D column type fiber-optic vector hydrophone[C](2016).

    [58] Hill D J, Nash P J, Jackson D A et al. Fiber laser hydrophone array[J]. Proceedings of SPIE, 3860, 55-66(1999).

    [59] Cusano A, Campopiano S, D’Addio S et al. Optical fiber hydrophone using polymer-coated fiber Bragg grating[C], ThE85(2006).

    [60] Moccia M, Consales M, Iadicicco A et al. Resonant hydrophones based on coated fiber Bragg gratings[J]. Journal of Lightwave Technology, 30, 2472-2481(2012).

    [61] Plotnikov M Y, Lavrov V S, Dmitraschenko P Y et al. Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications[J]. IEEE Sensors Journal, 19, 3376-3382(2019).

    [62] Lavrov V S, Plotnikov M Y, Aksarin S M et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings[J]. Optical Fiber Technology, 34, 47-51(2017).

    [63] Vlasov A A, Yu Plotnikov M, Ashirov A N et al. The method for protection of sensitive fiber optic components from environmental noise and vibration impacts[C], 305-307(2019).

    [64] Wang W, Hu Z L, Ma M X et al. Strong fiber Bragg grating based asymmetric Fabry-Perot sensor system with multiple reflections for high sensitivity enhancement[J]. Optical Fiber Technology, 20, 95-99(2014).

    [65] Pang Y D. Research on key technology for ultrathin fiber-optic hydrophone based on draw tower fiber Bragg grating array[D](2020).

    [66] Kersey A D, Dorsey K L, Dandridge A. Cross talk in a fiber-optic Fabry-Perot sensor array with ring reflectors[J]. Optics Letters, 14, 93-95(1989).

    [67] Lu Y, Meng Z. Methods of reducing TDM crosstalk in an inline FBG based Fabry-Perot sensor[J]. Proceedings of SPIE, 8194, 81942U(2011).

    [68] Wang W. Research on the optical solutions for sensitivity promotion of fiber Bragg grating based Fabry-Perot sensors[D](2015).

    [69] Waagaard O H. Method and apparatus for reducing crosstalk interference in an inline Fabry-Perot sensor array[P].

    [70] Waagaard O H, Ronnekleiv E. Multi-pulse heterodyne sub-carrier interrogation of interferometric sensors[P].

    [71] Rosenthal A, Horowitz M. Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings[J]. IEEE Journal of Quantum Electronics, 39, 1018-1026(2003).

    [72] Gao Z P, Yu Z H, Xing L H. A novel method for reconstructing strongly reflecting fiber Bragg gratings[J]. Acta Optica Sinica, 26, 991-996(2006).

    [73] Gao Z P, Yu Z H, Xing L H. A full time-domain algorithm for the synthesis of fiber Bragg gratings[J]. Journal of Optoelectronics·Laser, 18, 190-193(2007).

    [74] Waagaard O H, Rønnekleiv E. Method and apparatus for providing polarization insensitive signal processing for interferometric sensors[P].

    [75] Kersey A D, Marrone M J, Dandridge A. Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors[J]. Optics Letters, 13, 847-849(1988).

    [76] Saijyou K, Okawara C, Okuyama T et al. Fiber Bragg grating hydrophone with polarization-maintaining fiber for mitigation of polarization-induced fading[J]. Acoustical Science and Technology, 33, 239-246(2012).

    [77] Kersey A D, Dandridge A, Tveten A B. Elimination of polarization induced signal fading in interferometric fiber sensors using input polarization control[C], WCC2(1988).

    [78] Frigo N J, Dandridge A, Tveten A B. Technique for elimination of polarisation fading in fibre interferometers[J]. Electronics Letters, 20, 319-320(1984).

    [79] Zhou X D, Zhou W. Research on diversity detection and depolarization fading technology of interferometric fiber optic sensors and arrays[J]. Acta Optica Sinica, 18, 773-778(1998).

    [80] Lu M, Zhang Z L. Research on anti-polarization fading technology of optical fiber distributed sensor[J]. Acoustics and Electronics Engineering, 6-9(2013).

    [81] Cai B T, Mou Z X, Chen X B. Demodulation based on real-time polarization switching for fiber grating hydrophone array signal[J]. Optical Fiber & Electric Cable and Their Applications, 33-37(2018).

    [82] Jiang P, Ma L N, Hu Z L et al. Low-crosstalk and polarization-independent inline interferometric fiber sensor array based on fiber Bragg gratings[J]. Journal of Lightwave Technology, 34, 4232-4239(2016).

    [83] Waagaard O H, Rønnekleiv E, Forbord S et al. Suppression of cable induced noise in an interferometric sensor system[J]. Proceedings of SPIE, 7503, 75034Q(2009).

    [84] Shang F, Qi Y, Ma L N et al. Background phase noise of interferometric TDM sensing array based on fiber Bragg grating[J]. Acta Optica Sinica, 41, 1306011(2021).

    [85] Cai B T, Jing C P, Shu P et al. Cable vibration noise suppression technique for unbalanced fiber optic hydrophone towed array[J]. Optical Fiber & Electric Cable and Their Applications, 33-36(2019).

    [86] Guo Z, Gao K, Zhang W H et al. Doppler noise in the inline FBG-based interferometric hydrophone array[C](2017).

    [87] Shang F, Yu Y, Ma L N et al. Analysis on leading-fiber-induced Doppler noise in interferometric FBG sensor arrays using polarization switching and PGC hybrid processing method[J]. Optics Express, 29, 16118-16134(2021).

    [88] Liu D M, Sun Q Z. Distributed optical fiber sensing technology and its applications[J]. Laser & Optoelectronics Progress, 46, 29-33(2009).

    [89] Cao C Y, Xiong S D, Hu Z L et al. Noise analysis of repeaterless long-haul fiber-optic hydrophone systems with the fiber length up to 200 km[J]. Acta Optica Sinica, 33, 0406006(2013).

    [90] Marrone M J, Kersey A D, Villarruel C A et al. Elimination of coherent Rayleigh backscatter induced noise in fibre Michelson interferometers[J]. Electronics Letters, 28, 1803-1804(1992).

    Qihao Hu, Xiaoqian Zhu, Lina Ma, Yue Qi, Fan Shang, Yujie Bian. Advances in Passive-Interferometric Type Fiber Bragg Grating-Based Hydrophones[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106015
    Download Citation