
- Chinese Optics Letters
- Vol. 17, Issue 10, 100012 (2019)
Abstract
As increase in the ongoing expansion of human activities in ocean environments, such as oceanographic research, offshore oil exploration, tactical surveillance, pollution monitoring, and underwater salvage, high-bandwidth data transfer, like the exchange of large volumes of data files between fixed sensor nodes and autonomous underwater vehicles (AUVs) or remotely operated vehicles (ROVs), shuttling real-time video from untethered vehicles for inspection and identification, is indispensable. The mature technology of acoustic communication could support transmission distances of tens of kilometers[
In recent years, UWOC has attracted considerable interest from academic, industrial, and military circles, and is deemed as a revolutionary and competitive technology to its acoustic and RF counterparts, particularly when applied in broadband communications between diverse underwater vehicles, underwater sensor nodes, and underwater base stations[
With the increased attention in UWOC research, several surveys have been published to review this emerging subject. In Ref. [
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
It is important to understand aquatic optical channel characterization before conducting a UWOC experiment. Monte Carlo simulation is a popular numerical method achieved by sending and tracking the trajectories of a large number of emitted photons[
For a UWOC lab experiment, one principal target is to improve the capacity and extend the transmission distance of a UWOC system. Since the first experimental demonstration of high speed UWOC on the order of Gb/s[
In terms of practical implementations of UWOC, the Woods Hole Oceanographic Institution (WHOI) designed an optical modem system based on omnidirectional LED arrays and hemispherical PMT in 2006, and validated 5 Mb/s over 91 m underwater transmission[
Sun
Authors | Transmitter type | Light | Photodetector | Modulation formats | Data | Distance (m) | Distance-data | Real time |
---|---|---|---|---|---|---|---|---|
Xu | Blue LED | N/A | PIN | 16-QAM-OFDM | 161 Mb/s | 2 | 0.32 | N |
Tian | 440 nm micro-LED | N/A | PIN/APD | OOK | 800/200 Mb/s | 0.6/5.4 | 1.08 | N |
Wang | 521 nm LED | 160 mW | 2 PINs | 64-QAM-DMT, MRC | 2.175 Gb/s | 1.2 | 2.61 | N |
Zhou | RGBYC LED | PIN | Bit-power loading DMT | 15.17 Gb/s | 1.2 | 18.2 | N | |
Wang | 448 nm LED | N/A | APD | OOK | 25 Mb/s | 10 | 0.25 | Y |
Wang | 520 nm LD | 15 mW | MPPC | 32-QAM-OFDM | 312.03 Mb/s | 21 | 6.55 | N |
Oubei | 450 nm LD | 15 mW | APD | 16-QAM-OFDM | 4.8 Gb/s | 5.4 | 25.92 | N |
Chen | 520 nm LD | 15 mW | APD | 32-QAM-OFDM | 5.5 Gb/s | 5/21 | 115.5 | N |
Liu | 520 nm LD | 19.4 mW | PIN/APD | OOK | 2.7 Gb/s | 34.5 | 93.15 | N |
Fei | 450 nm LD | 20 mW | APD | Bit-power loading DMT, NE | 7.3 Gb/s | 15 | 109.95 | N |
Fei | 450 nm LD | 12.8 mW | APD | MB-DFT-S-DMT | 5.6 Gb/s | 55 | 308 | N |
Fei | 450 nm LD | 120 mW | PIN | Bit-power loading DMT, NE | 16.6/6.6 Gb/s | 5/55 | 462@35 m | N |
Li | Two 488 nm LDs | 20 mW | PIN | PAM4, injection locking | 16 Gb/s | 10 | 160 | N |
Li | Three 680 nm LDs | 3 mW | PIN | Injection locking, OOK | 25 Gb/s | 10 | 250 | N |
Huang | 450 nm LD | 120 mW | PIN/APD | 16-QAM-OFDM | 14.8/10.8 Gb/s | 1.7/10.2 | 25.16/110 | N |
Hong | 450 nm LD | 120 mW | PIN | PCS-DMT | 18.09/12.6 Gb/s | 5/35 | 441@35 m | N |
Wang | 520 nm LD | 15 mW | APD | OOK, NE | 500 Mb/s | 100 | 50 | N |
Hu | 532 nm LD | N/A | SPD | 256-PPM & RS, LDPC | ∼MHz | 120 | N/A | N |
JAMSTEC[ | 450 nm LD | PMT | N/A | 20 Mb/s | 120 | 2.4 | Y |
Table 1. Summary of Recent Works in UWOC
A schematic diagram of the general UWOC experimental setup in a lab is shown in Fig.
Figure 1.Schematic diagram of the general UWOC setup in a lab experiment. AWG: arbitrary waveform generator; EA: electrical amplifier; ATT: adjustable attenuator; DC: direct current; LD: laser diode; APD: avalanche photodiode; DSA: digital serial analyzer; Tx-DSP: digital signal processing at the transmitter; Rx-DSP: digital signal processing at the receiver.
Figure 2.Received optical power (ROP) and SNR versus transmission distance under tap water. w/: with; w/o: without; NLE: nonlinear equalization[
The performance of our proposed scheme under different water turbidity conditions has been investigated. The received SNR under different water turbidities after a 1 m transmission distance is shown in Fig.
Figure 3.(a) Received SNR versus the volume of added Maalox suspension after a 1 m underwater transmission. (b) Attenuation coefficient versus volume of the added Maalox suspension. (c)–(f) The snapshots of the optical beam passing through water of different turbidities which represent (c) “tap water”, (d) “clear ocean”, (e) “coastal ocean”, and (f) “harbor water”[
Apart from enhancing the SNR of the system, increasing system capacity is another hot topic in UWOC research. Recently, a powerful and flexible channel capacity limit-approaching technique, called PCS has been extensively studied in wireless communication[
The Shannon capacity limit
Figure 4.(a) Shannon capacity limit under different underwater transmission distances. (b) Entropy of different subcarriers for 25 m and 35 m underwater transmission distances. (c) Graphical illustrations for bit-power loading and the PCS-256/1024QAM-DMT scheme of three different entropies. Note that the bars denote the probability of each modulation symbol[
Figures
Figure 5.Received constellation diagrams of (a) bit-power loading, (b) PCS-256QAM-DMT for 35 m, and (c) PCS-1024QAM-DMT for 25 m underwater transmissions[
In this paper, recent research progress has been reviewed for both LED- and LD-based UWOC systems, mainly from a perspective of advanced modulation formats. UWOC systems are susceptible to nonlinearity induced by the components (e.g., LED, LD), which may yield severe impairments in the received signals. Volterra series-based nonlinear equalizers can effectively combat such nonlinear impairments, enhancing the system performance. We have proposed a simplified Volterra nonlinear equalizer by which the SNR received by the system can be enhanced by 2–3 dB. The robustness of the nonlinear equalizer in UWOC systems has also been validated. To further increase the system capacity, the PCS technique has been introduced to address the inherent gap between the conventional regular QAM format and the Shannon capacity of the UWOC system. Together with DMT, a fixed QAM format with different probabilistic distributions has been individually assigned to each subcarrier to achieve the maximum system capacity. Our experimental results have shown a net data rate of 18.09 Gb/s over a 5 m underwater channel, which is the highest data rate ever reported for a single LD in UWOC[
References
[1] GPM 3000 Acoustic Modem Features. Oceania.
[2] I. F. Akyildiz, D. Pompili, T. Melodia. Ad Hoc Netw., 3, 257(2005).
[3] Z. Zeng, S. Fu, H. Zhang, Y. Dong, J. Cheng. IEEE Commun. Surv. Tut., 19, 204(2016).
[4] H. Kaushal, G. Kaddoum. IEEE Access Underwater Opt. Wireless Commun., 4, 1518(2016).
[5] N. Saeed, A. Celik, T. Y. Al-Naffouri, M.-S. Alouini. Ad Hoc Netw., 94, 101935(2019).
[6] S. Q. Duntley. J. Opt. Soc. Am., 53, 214(1963).
[7] G. D. Gilbert, T. R. Stoner, J. L. Jernigan. Proc. SPIE, 7, 3(1966).
[8] Sonardyne International Ltd.
[11] H. Lan, I. Tseng, H. Kao, Y. Lin, G. Lin, C. Wu. IEEE J. Quantum Electron., 54, 3300106(2018).
[14] C. Li, H. Lu, W. Tsai, Z. Wang, C. Hung, C. Su, Y. Lu. IEEE Photon. J., 10, 7904909(2018).
[15] A. S. Fletcher, S. A. Hamilton, J. D. Moores. IEEE Commun. Mag., 53, 49(2015).
[16] S. Arnon. Opt. Eng., 49, 015001(2010).
[17] H. Kaushal, G. Kaddoum. IEEE Access Underwater Opt. Wireless Commun., 4, 1518(2016).
[18] Z. Zeng, S. Fu, H. Zhang, Y. Dong, J. Cheng. IEEE Commun. Surv. Tut., 19, 204(2016).
[19] N. Saeed, A. Celik, T. Y. Al-Naffouri, M.-S. Alouini. Ad Hoc Net., 94, 101935(2019).
[20] N. Chi, M. Shi. Chin. Opt. Lett., 16, 120603(2018).
[21] C. Shen, O. Alkhazragi, X. Sun, Y. Guo, T. K. Ng, B. S. Ooi. Proc. SPIE, 10939, 109390E(2019).
[22] L. Wang, S. L. Jacques, L. Zheng. Comput. Methods Programs Biomed., 47, 131(1995).
[23] R. M. Lerner, J. D. Summers. Appl. Opt., 21, 861(1982).
[24] C. Wang, H.-Y. Yu, Y.-J. Zhu. IEEE Photon. J., 8, 7906311(2016).
[26] H. Zhang, Y. Dong. IEEE Trans. Wireless Commun., 15, 1162(2016).
[27] S. Tang, Y. Dong, X. Zhang. IEEE Trans. Commun., 62, 226(2014).
[28] H. Zhang, Y. Dong. IEEE Commun. Mag., 54, 56(2016).
[29] F. Hanson, S. Radic. Appl. Opt., 47, 277(2008).
[30] J. Xu, M. Kong, A. Lin, Y. Song, X. Yu, F. Qu, J. Han, N. Deng. Opt. Commun., 369, 100(2016).
[32] J. Wang, X. Yang, W. Lv, C. Yu, J. Wu, M. Zhao, F. Qu, Z. Xu, J. Han, J. Xu. Opt. Commun., 451, 181(2019).
[33] F. Wang, Y. Liu, F. Jiang, N. Chi. Opt. Commun., 425, 106(2018).
[34] N. Chi, Y. Zhao, M. Shi, P. Zou, X. Lu. Opt. Express, 26, 26700(2018).
[38] Y. Huang, C. Tsai, Y. Chi, D. Huang, G. Lin. IEEE J. Lightwave Technol., 36, 1739(2018).
[39] C. Fei, J. Zhang, G. Zhang, Y. Wu, X. Hong, S. He. IEEE J. Lightwave Technol., 36, 728(2018).
[40] C. Fei, X. Hong, G. Zhang, J. Du, Y. Gong, J. Evans, S. He. Opt. Express, 26, 34060(2018).
[41] C. Fei, X. Hong, G. Zhang, J. Du, Y. Wang, S. He. IEEE Photon. Technol. Lett., 31, 1315(2019).
[42] X. Hong, C. Fei, G. Zhang, J. Du, S. He. Opt. Lett., 44, 558(2019).
[43] S. Hu, L. Mi, T. Zhou, W. Chen. Opt. Express, 26, 21685(2018).
[44] J. Wang, C. Lu, S. Li, Z. Xu. Opt. Express, 27, 12171(2019).
[45] A. Al-Halafi, H. M. Oubei, B. S. Ooi, B. Shihada. IEEE/OSA J. Opt. Commun. Net., 9,, 826(2017).
[46] A. Al-Halafi, B. Shihada. IEEE Photon. J., 101, 7902914(2018).
[47] N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, F. Sonnichsen. OCEANS 2006(2006).
[48] C. Pontbriand, N. Farr, J. Ware, J. Preisig, H. Popenoe. OCEANS 2008(2008).
[49] C. Pontbriand, N. Farr, J. Hansen, J. C. Kinsey, L. P. Pelletier, J. Ware, D. Fourie. OCEANS 2015(2015).
[50] M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, D. Rus. OCEANS 2009(2009).
[51] D. Marek, D. Rus. IEEE International Conference on Communication Systems, 390(2010).
[56] G. Baiden, Y. Bissiri, A. Masoti. Ocean Eng., 36, 633(2009).
[57] G. Baiden, Y. Bissiri. OCEANS 2007(2007).
[59] P. Wang, C. Li, Z. Xu. IEEE J. Lightwave Technol., 36, 2627(2018).
[60] X. Shan, C. Yang, Y. Chen, Q. Xia. OCEANS 2017(2017).
[64] Y. Zhao, A. Wang, L. Zhu, W. Lv, J. Xu, S. Li, J. Wang. Opt. Lett., 42, 4699(2017).
[65] W. Wang, P. Wang, T. Cao, H. Tian, Y. Zhang, L. Guo. IEEE Photon. J., 9, 7905315(2017).
[66] A. Wang, L. Zhu, Y. Zhao, S. Li, W. Lv, J. Xu, J. Wang. Opt. Express, 26, 8669(2018).
[69] X. Sun, M. Kong, C. Shen, C. Kang, T. K. Ng, B. S. Ooi. Opt. Express, 27, 19635(2019).
[71] Z. Vali, A. Gholami, Z. Ghassemlooy, M. Omoomi, D. G. Michelson. Appl. Opt., 57, 8314(2018).
[75] T. K. Biswas, W. F. McGee. IEEE Photon. Technol. Lett., 3, 706(1991).
[77] J. Kim, K. Konstantinou. Electron. Lett., 37, 1417(2001).
[79] C. Ju, N. Liu, X. Chen, Z. Zhang. J. Lightwave Technol., 33, 4997(2015).
[80] G. Stepniak, J. Siuzdak, P. Zwierko. IEEE Photon. Technol. Lett., 25, 1597(2013).
[81] Y. Wang, L. Tao, X. Huang, J. Shi, N. Chi. IEEE Photonics J., 7, 7901907(2015).
[82] C. Eun, E. J. Powers. IEEE Trans. Signal Process., 45, 223(1997).
[83] F. P. Guiomar, J. D. Reis, A. L. Teixeira, A. N. Pinto. Opt. Express, 20, 1360(2012).
[84] G. Zhang, J. Zhang, X. Hong, S. He. Opt. Express, 25, 3780(2017).
[85] G. Zhang, C. Fei, S. He, X. Hong. Asia Communications and Photonics Conference (ACP), Su2A.75(2017).
[86] G. Zhang, X. Hong, C. Fei, X. Hong. J. Lightwave Technol.(2019).
[87] J. W. Giles, I. N. Bankman. Proceedings of IEEE Military Communication Conference, 1700(2005).
[88] G. Böcherer, F. Steiner, P. Schulte. IEEE Trans. Commun., 63, 4651(2015).
[90] T. Fehenberger, A. Alvarado, G. Böcherer, N. Hanik. J. Lightwave Technol., 34, 5063(2016).
[91] C. Xie, Z. Chen, S. Fu, W. Liu, Z. He, L. Deng, M. Tang, D. Liu. Opt. Express, 26, 367(2018).
[92] T. M. Cover, J. A. Thomas. Elements of Information Theory(2006).

Set citation alerts for the article
Please enter your email address