• Chinese Optics Letters
  • Vol. 23, Issue 2, 023602 (2025)
Xin Luo1,2,3, Shilin Yu1,4, Yingli Ha1,3,4, Fei Zhang1,4..., Mingbo Pu1,3,4, Qiong He1,4, Yinghui Guo1,3,4, Mingfeng Xu1,4 and Xiangang Luo1,3,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
  • show less
    DOI: 10.3788/COL202523.023602 Cite this Article Set citation alerts
    Xin Luo, Shilin Yu, Yingli Ha, Fei Zhang, Mingbo Pu, Qiong He, Yinghui Guo, Mingfeng Xu, Xiangang Luo, "Excitation of multiple bound states in the continuum by arbitrary selection of perturbation via a dielectric metasurface," Chin. Opt. Lett. 23, 023602 (2025) Copy Citation Text show less

    Abstract

    In this paper, a new strategy is proposed based on arbitrary selection of perturbation in a dielectric metasurface to achieve multiple quasi-bound states in the continuum (BICs) with identical modes under dual polarizations. Three distinct symmetry-broken perturbations are discussed. By selecting an arbitrary perturbation, triple quasi-BICs can be induced in transverse magnetic polarization modes at wavelengths of 1071.18, 1098.8, and 1199.6 nm, respectively. Simultaneously, double quasi-BICs at wavelengths of 1375.9 and 1628.5 nm are generated in transverse electric polarization modes. Moreover, the excited quasi-BICs exhibit excellent sensing performance with a maximum sensitivity of 900 nm/RIU, which is better than similar previous studies.
    I(Fγ+ωω0)2(ωω0)2+γ2,

    View in Article

    Xin Luo, Shilin Yu, Yingli Ha, Fei Zhang, Mingbo Pu, Qiong He, Yinghui Guo, Mingfeng Xu, Xiangang Luo, "Excitation of multiple bound states in the continuum by arbitrary selection of perturbation via a dielectric metasurface," Chin. Opt. Lett. 23, 023602 (2025)
    Download Citation