[1] APPEL F, CLEMENS H, FISCHER F. Modeling concepts for intermetallic titanium aluminides[J]. Prog Mater Sci, 2016, 81: 55-124.
[2] SONG L, XU X J, YOU L, et al. Ordered α2 to ωo phase transformations in high Nb-containing TiAl alloys[J]. Acta Mater, 2015, 91: 330-339.
[3] BEWLAY B, NAG S, SUZUKI A, et al. TiAl alloys in commercial aircraft engines[J]. Mater High Temp, 2016, 33(4-5): 549-559.
[5] TAUB A, FLEISCHER R. Intermetallic compounds for high-temperature structural use[J]. Science, 1989, 243(4891): 616-621.
[6] CHEN R R, WANG Q, ZHOU Z C, et al. Microstructure, tensile properties and creep behavior of high-Al TiAlNb alloy using electromagnetic cold crucible continuous casting[J]. J. Alloys Compd, 2019, 801: 166-174.
[7] YAMAGUCHI M, JOHNSON D, LEE H, et al. Directional solidification of TiAl-base alloys[J]. Intermetallics, 2000, 8(5-6): 511-517.
[8] JIN H, JIA Q, XIAN Q G, et al. Seeded growth of Ti-46Al-8Nb polysynthetically twinned crystals with an ultra-high elongation[J]. J Mater Sci Technol, 2020, 54: 190-195.
[9] LAPIN J, GABALCOVA Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique[J]. Intermetallics, 2011, 19(6): 797-804.
[10] ZHANG H R, TANG X X, ZHOU C G, et al. Comparison of directional solidification of γ-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles[J]. J Eur Ceram Soc, 2013, 33(5): 925-934.
[12] LAPIN J, GABALCOVA Z, PELACHOVA T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti-46Al-8Nb alloy[J]. Intermetallics, 2011, 19(3): 396-403.
[17] CHEN G Y, LAN B B, XIONG F H, et al. Pilot-scale experimental evaluation of induction melting of Ti-46Al-8Nb alloy in the fused BaZrO3 crucible[J]. Vacuum, 2019, 159: 293-298.