[1] JI J YZHAO Y FZHANG Y Het al.Infrared and visible image fusion of generative adversarial network based on multichannel encoding and decoding[J].Infrared Physics and Technology2023134 (2):104853.
[4] LI HWU X J.DenseFuse:a fusion approach to infrared and visible images[J].IEEE Transactions on Image Processing201928(5):26142623.
[5] LI HWU X JDURRANI T.NestFuse:an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J].IEEE Transactions on Instrumentation and Measurement202069.doi:10.1109/TIM.2020.3005230.
[6] LI HWU X JKITTLER J.RFNNest:an endtoend residual fusion network for infrared and visible images[J].Information Fusion202173:7286.
[7] MA J YZHANG HSHAO Z Fet al.GANMcC:a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J].IEEE Transactions on Instrumentation and Measurement202070.doi:10.1109/TIM.2020.3038013.
[8] MA J YYU WLIANG P Wet al.FusionGAN:a generative adversarial network for infrared and visible image fusion[J].Information Fusion201848(C):1126.
[9] ZHAO Z XXU SZHANG C Xet al.DIDFuse:deep image decomposition for infrared and visible image fusion[C]//TwentyNinth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence (IJCAIPRICAI20).Yokohama:IJCAI2020.doi:10.24963/ijcai.2020/135.
[10] WANG DLIU J YFAN Xet al.Unsupervised misaligned infrared and visible image fusion via crossmodality image generation and registration [EB/OL].(20220525)[20221115].https://arXiv.org/abs/2205.11876.
[11] TOET A.The TNO multiband image data collection[J].Data in Brief201715:249251.