[1] Voulodimos A, Doulamis N, Doulamis A et al. Deep learning for computer vision: a brief review[J]. Computational Intelligence and Neuroscience, 2018, 7068349(2018).
[2] Esteva A, Chou K, Yeung S et al. Deep learning-enabled medical computer vision[J]. Npj Digital Medicine, 4, 5(2021).
[3] Zhao Z Q, Zheng P, Xu S T et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 30, 3212-3232(2019).
[4] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[5] Sun Y J, Qu Z Y, Li Y H. Study on target detection of breast tumor based on improved Mask R-CNN[J]. Acta Optica Sinica, 41, 0212004(2021).
[6] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C], 2980-2988(2017).
[7] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[8] Zhang G R, Chen X, Zhao Y et al. A lightweight YOLOv3 algorithm for small target detection[J]. Acta Optica Sinica, 59, 1610008(2022).
[9] Wang J J, Wei J, Mei S H et al. An improved YOLOv3 for small object detection in remote sensing images[J]. Computer Engineering and Applications, 57, 133-141(2021).
[10] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9905, 21-37(2016).
[12] Jeong J, Park H, Kwak N. Enhancement of SSD by concatenating feature maps for object detection[C], 76.1-76.12(2017).
[13] Chen H J, Wang Q Q, Yang G W et al. SSD object detection algorithm with multi-scale convolution feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 13, 1049-1061(2019).
[14] Zhou Y F, Li W L, Hu R R. Two-channel SSD pedestrian head detection algorithm based on multi-scale feature fusion[J]. Laser & Optoelectronics Progress, 58, 2415009(2021).
[16] Guo R H, Zhang L, Yang Y et al. X-ray image controlled knife detection and recognition based on improved SSD[J]. Laser & Optoelectronics Progress, 58, 0404001(2021).
[17] Yin Q J, Yang W Z, Ran M Y et al. FD-SSD: an improved SSD object detection algorithm based on feature fusion and dilated convolution[J]. Signal Processing: Image Communication, 98, 116402(2021).
[21] Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).
[22] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[23] Liu S, Qi L, Qin H F et al. Path aggregation network for instance segmentation[C], 8759-8768(2018).
[24] Chollet F. Xception: deep learning with depthwise separable convolutions[C], 1800-1807(2017).
[26] Zhang Z, Li M Z, Li H F et al. Improved SSD algorithm and its application in subway security detection[J]. Computer Engineering, 47, 314-320(2021).
[27] Everingham M, van Gool L, Williams C K I et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 88, 303-338(2010).
[28] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).
[29] Shen Z Q, Liu Z, Li J G et al. DSOD: learning deeply supervised object detectors from scratch[C], 1937-1945(2017).
[31] Zheng L W, Fu C M, Zhao Y. Extend the shallow part of single shot multibox detector via convolutional neural network[J]. Proceedings of SPIE, 10806, 1080613(2018).
[32] Lim J S, Astrid M, Yoon H J et al. Small object detection using context and attention[C], 181-186(2021).
[33] Zhai S P, Shang D R, Wang S H et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE Access, 8, 24344-24357(2020).