[1] Ntziachristos V, Tung C H, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo[J]. Nature Medicine, 2002, 8: 757-761.
[2] Ale A, Ermolayev V, Herzog E,et al. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography[J]. Nature Methods, 2012, 9: 615-620.
[3] Tian J. Molecular imaging[M]. Hangzhou: Zhejiang University Press, 2013: 185-216.
[4] He X L, Wang X D, Yi H J, et al. Laplacian manifold regularization method for fluorescence molecular tomography[J]. Journal of Biomedical Optics, 2017, 22(4): 045009.
[5] Guo H B, Yu J J, He X W, et al. Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization[J]. Biomedical Optics Express, 2015, 6(5): 1648-1664.
[6] Hou Y Q, Wei H N, Yi H J, et al. Imaging system of fluorescence molecular tomography with spiral excitation[J]. Journal of Xidian University (Natural Science), 2018, 45(2): 97-102.
[7] Zhu D W, Li C Q. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement[J]. Physics in Medicine and Biology, 2014, 59(12): 2901-2912.
[8] Chen D F, Liang J M, Li Y, et al. A sparsity-constrained preconditioned Kaczmarz reconstruction method for fluorescence molecular tomography[J]. BioMed Research International, 2016, 2016: 4504161.
[9] An Y, Liu J, Zhang G L, et al. A novel region reconstruction method for fluorescence molecular tomography[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(7): 1818-1826.
[10] Wu Z T, Wang X D, Yu J, J, et al. Synchronization-based clustering algorithm for reconstruction of multiple reconstructed targets in fluorescence molecular tomography[J]. Journal of the Optical Society of America A, 2018, 35(2): 328-335.
[11] Han D, Tian J, Zhu S P, et al. A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization[J]. Optics Express, 2010, 18(8): 8630-8646.
[12] Cong A, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 2005, 13(24): 9847-9857.
[13] Wang D F, Liu X, Chen Y P, et al. A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(5): 766-773.
[14] Cong W X, Wang G, Kumar D, et al. Practical reconstruction method for bioluminescence tomography[J]. Optics Express, 2005, 13(18): 6756-6771.
[15] Yi H J. Regularization based reconstruction algorithms for fluorescence molecular tomography[D]. Xi′an: Xidian University, 2013: 15-31.
[16] Bishop C. Pattern recognition and machine learning[M]. New York: Springer, 2006: 430-439.
[17] Dogdas B, Stout D, Chatziioannou A F, et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine & Biology, 2007, 52(3): 577-587.
[18] Liu H J, Hou Y Q, He X W, et al. A comparative study and evaluation on several typical iterative methods for bioluminescence tomography[J]. Laser & Optoelectronics Progress, 2015, 52(8), 52: 081704.
[19] Dong F, Hou Y Q, Yu J J, et al. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011701.
[20] Hou Y Q, Jin M Y, He X W, et al. Fluorescence molecular tomography using a stochastic variant of alternating direction method of multipliers[J]. Acta Optica Sinica, 2017, 37(7): 0717001.
[21] He X W, Liang J M, Wang X R, et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.
[22] Wang X D, Liu F, Jiao L C, et al. Incomplete variables truncated conjugate gradient method for signal reconstruction in compressed sensing[J]. Information Sciences, 2014, 288(20): 387-411.
[23] Zhang H B, Geng G H, Zhao Y C, et al. Nonconvex L1-2 regularization for fast cone-beam X-ray luminescence computed tomography[J]. Acta Optica Sinica, 2017, 37(6): 0617001.
[24] Zhang X, Yi H J, Hou Y Q, et al. Fast reconstruction in fluorescence molecular tomography based on locality preserving projections[J]. Acta Optica Sinica, 2016, 36(7): 0717001.
[25] Song X M, Pogue B W, Jiang S D, et al. Automated region detection based on the contrast-to-noise ratio in near-infrared tomography[J]. Applied Optics, 2004, 43(5): 1053-1062.