
- Chinese Optics Letters
- Vol. 21, Issue 4, 043801 (2023)
Abstract
1. Introduction
High-harmonic generation (HHG) is one of the most intriguing topics among the phenomena arising from the interaction of matter with intense laser fields. HHG originating from the ultrafast electron dynamics of atoms or molecules can be used to study the field-driven physics between strong laser pulse and matter. It has irreplaceable applications in many research fields, such as coherent extreme ultraviolet (EUV) to X-ray[1–3], chemical reaction tracing[4], molecular orbital imaging[5–7], and attosecond science[8–12]. In recent years, the nonperturbative HHG has also been observed in solid materials[13,14]. It has been proved to be a useful tool to reconstruct the electronic band structures and reveal the ultrafast electron dynamics in condensed matter all-optically[13–19].
HHG from solids is fundamentally different from that in the gaseous medium, owing to a variety of electronic structures in the lattice of bulk crystals[13–17,20–29]. Both the intraband current and interband polarization of the optically excited carriers can contribute to the emission of high-harmonics, despite the two mechanisms often intertwining[20–23,30,31]. In 2015, Vampa et al. found that the generalized recollision between the field-driven electron-hole pairs is the primary mechanism of HHG in ZnO[24], which brings new ideas for the study of solid-state HHG. In their study, two-color laser fields composed of the fundamental and second-harmonic generation (SHG) were adopted as a pump. The weak SHG can unbalance the electrons’ trajectories in adjacent half-cycles of driving field, and thus lead to the emission of even harmonics. Latterly, the modulation of high-harmonic emission was found to be sensitive to the symmetry properties of solid materials, which provides a method to analyze the mechanism of HHG[25–27]. Recently, two-color laser fields driving HHG have been adopted to disentangle the electron-hole dynamics from the surface charge region and the crystal bulk[27]. This has been used to establish the all-optical spectroscopy of a strongly driven crystal and reveal a laser-induced modification of the band structure[32].
Three-dimensional (3D) topological insulators (TIs) feature unconventional two-dimensional topological surface states (TSSs). In TSSs, the carriers are massless Dirac fermions, which provide a dissipationless transport channel on the TIs’ surface[33,34]. Very recently, the observations of HHG from 3D TIs have been reported by several groups, and experimental evidence of HHG originating from strong field dynamics of TSSs has been demonstrated[35–37]. Despite the exciting progress, strong laser fields can inevitably excite transitions between the bulk states and surface states and, in consequence, affect the nonlinear response. Thus, how to disentangle the bulk and surface contributions of HHG is still an open question.
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
2. Experiments and Methods
In this work, we investigated the HHG from
The experimental setup is shown in Fig. 1. The fundamental pulse was produced at the wavelength of 3820 nm from a home-built system that is composed of two identical three-stage optical parametric amplifiers (OPAs) and a difference frequency generation (DFG) module[40]. Subsequently, the fundamental pulse passed through an
Figure 1.Experimental setup. The fundamental and SHG are linearly polarized in s-polarization direction. The mirror plane of Bi2Se3 is rotated to be parallel to the polarization of the pump field.
Figure 2 shows a typical HHG spectrum pumped by the two-color laser fields; as a comparison, the HHG spectrum for fundamental pulse only is also shown. In measurements, the SHG intensity is
Figure 2.HHG spectrum with and without the SHG, respectively; the intensity of the fundamental is 77 GW/cm2; gray line, the SHG intensity is 0; green line, the SHG intensity is 0.025 GW/cm2; ϕ = π. The small peak at 1.48 eV is the second-order diffraction of H9 from the grating-based spectrometer.
By changing the phase delay of the two-color fields, periodic modulations of HHG were observed experimentally, as shown in Figs. 3(a)–3(c). For weak SHG intensity of
Figure 3.Harmonic yield versus the phase delay of two-color laser fields. (a) Modulation of H4 for the SHG intensity of 0.025 GW/cm2 (blue square and line) and 1.2 GW/cm2 (orange square and line); (b), (c) Modulation of H5 (b) and H6 (c) with the same experimental condition as (a).
In order to understand why there are two kinds of modulations for the even harmonics, we discussed the HHG mechanisms by using semiconductor Bloch equations (SBEs)[28]. It is known that the modulations of HHG are closely related to the symmetry of solids[25-27]. According to Ref. [28], the complex transition dipole moment (TDM)
3. Results and Discussion
To find out how TDM affects the observed HHG modulation in our experiments, we focus on the interband polarization between conduction and valence bands in SBEs. The interband current generated by a single quantum orbital satisfies[28]
Considering that the SHG is very weak and only perturbs the dynamical phase of the electron wave packet, the classical action is given by[38]
We calculated the interband current by summing up the transient current from adjacent half-cycles, which is similar to the derivation in Ref. [28],
For the surface states, the dipole phase plays an indispensable role. Because the SHG is very weak, its influence on TDM can be ignored[24,28,38]. Taking the expression of complex TDM, we can get
In both Eqs. (6) and (7), the first terms are contributed from the nontrivial dipole phase, and the second and third terms describe the modulation due to the SHG field that oscillates as a function of phase delay
Without SHG | With SHG | |
---|---|---|
Inversion symmetry (bulk) | σ = 0, Δθ = 0; no even harmonics | σ ≠ 0, Δθ = 0; even harmonics; modulation, T2ω/2 |
Inversion symmetry breaking (surface) | σ = 0, Δθ ≠ 0; even harmonics | σ ≠ 0, Δθ ≠ 0; even harmonics; modulation, T2ω |
Table 1. Summary of Modulation Results Dictated by Symmetry
The analytical expression of the intraband current is relatively complex; however, it has a form similar to that of the interband polarization[28]. Through the above analytical analysis, we interpret the origin of the two kinds of HHG modulation.
Our analysis above focuses on the contributions of surface states and bulk states to HHG. It confirms our speculation that for very weak SHG, even harmonics with
Figure 4(a) shows the high-harmonic spectrum from TSSs with and without the SHG in pump pulses, respectively. The intensity of H4 increases, and the intensity of H6 decreases in the presence of the SHG compared with the absence of the SHG, which is consistent with the experimental observations displayed in Fig. 2. Therefore, we speculate that the even harmonics in the experiment mainly come from TSSs. For comparison, in Fig. 4(b) we plot the high-harmonic spectrum from bulk states driven by the fundamental and two-color laser fields. Unsurprisingly, even harmonics vanish when the SHG is absent, whereas even harmonics can be produced by adding very weak SHG. These indicate that the weak SHG breaks the symmetry of the driven field and induces asymmetry in electron-hole trajectory; thus, the even harmonics are produced[23].
Figure 4.Calculated high-harmonic spectra. (a) HHG from the surface states with and without the SHG; blue line, harmonic spectrum without the SHG; orange line, harmonic spectrum for the SHG intensity equal to 40 MW/cm2 and ϕ = 0.6π. (b) HHG from the bulk states with and without the SHG; blue line, harmonic spectrum without the SHG; orange line, harmonic spectrum for the SHG intensity equal to 40 MW/cm2 and ϕ = 0.6π.
We also calculated the high-harmonic yield that modulates relative to the phase delay
Figure 5.High-harmonic yield modulated with the phase delay of two-color laser fields. (a), (b) Modulation of H4 (a) and H5 (b) from the surface states, for the SHG intensity of 4 MW/cm2 (red line) and 40 MW/cm2 (blue line), respectively; (c), (d) modulation of H4 (c) and H5 (d) from the bulk states, for the SHG intensity of 4 MW/cm2 (red line), 40 MW/cm2 (blue line), and 400 MW/cm2 (purple line), respectively.
4. Conclusion
To conclude, the experimentally observed even harmonics with the modulation period of
References
[1] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287(2012).
[2] T. Popmintchev, M. C. Chen, P. Arpin, M. M. Murnane, H. C. Kapteyn. The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photonics, 4, 822(2010).
[3] Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, H. C. Kapteyn. Generation of coherent soft X rays at 2.7 nm using high harmonics. Phys. Rev. Lett., 79, 2967(1997).
[4] H. J. Worner, J. B. Bertrand, D. V. Kartashov, P. B. Corkum, D. M. Villeneuve. Following a chemical reaction using high-harmonic interferometry. Nature, 466, 604(2010).
[5] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve. Tomographic imaging of molecular orbitals. Nature, 432, 867(2004).
[6] C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, S. Stagira. Generalized molecular orbital tomography. Nat. Phys., 7, 822(2011).
[7] H. Niikura, N. Dudovich, D. M. Villeneuve, P. B. Corkum. Mapping molecular orbital symmetry on high-order harmonic generation spectrum using two-color laser fields. Phys. Rev. Lett., 105, 053003(2010).
[8] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, P. Agostini. Observation of a train of attosecond pulses from high harmonic generation. Science, 292, 1689(2001).
[9] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli. Isolated single-cycle attosecond pulses. Science, 314, 443(2006).
[10] P. B. Corkum, F. Krausz. Attosecond science. Nat. Phys., 3, 381(2007).
[11] F. Krausz, M. Ivanov. Attosecond physics. Rev. Mod. Phys., 81, 163(2009).
[12] L. Gallmann, C. Cirelli, U. Keller. Attosecond science: recent highlights and future trends. Annu. Rev. Phys. Chem., 63, 447(2012).
[13] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, D. A. Reis. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys., 7, 138(2011).
[14] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, R. Huber. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics, 8, 119(2014).
[15] B. Zaks, R. B. Liu, M. S. Sherwin. Experimental observation of electron-hole recollisions. Nature, 483, 580(2012).
[16] G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C. R. McDonald, T. Brabec, D. D. Klug, P. B. Corkum. All-optical reconstruction of crystal band structure. Phys. Rev. Lett., 115, 193603(2015).
[17] S. Ghimire, D. A. Reis. High-harmonic generation from solids. Nat. Phys., 15, 10(2019).
[18] J. Y. Cao, N. Li, Y. Bai, P. Liu, R. X. Li. Even-order high-harmonic generation from solids in velocity gauge. Chin. Opt. Lett., 19, 043201(2021).
[19] C. X. Zhang, X. H. Li, E. Chen, H. R. Liu, P. P. Shum, X. H. Chen. Hydrazone organics with third-order nonlinear optical effect for femtosecond pulse generation and control in the L-band. Opt. Laser Technol., 151, 108016(2022).
[20] A. F. Kemper, B. Moritz, J. K. Freericks, T. P. Devereaux. Theoretical description of high-order harmonic generation in solids. New J. Phys., 15, 023003(2013).
[21] T. Higuchi, M. I. Stockman, P. Hommelhoff. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett., 113, 213901(2014).
[22] P. G. Hawkins, M. Y. Ivanov, V. S. Yakovlev. Effect of multiple conduction bands on high-harmonic emission from dielectrics. Phys. Rev. A, 91, 013405(2015).
[23] G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, T. Brabec. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett., 113, 073901(2014).
[24] G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C. R. McDonald, T. Brabec, P. B. Corkum. Linking high harmonics from gases and solids. Nature, 522, 462(2015).
[25] T. T. Luu, H. J. Worner. High-order harmonic generation in solids: a unifying approach. Phys. Rev. B, 94, 115164(2016).
[26] T. T. Luu, H. J. Worner. Observing broken inversion symmetry in solids using two-color high-order harmonic spectroscopy. Phys. Rev. A, 98, 041802(R)(2018).
[27] G. Vampa, H. Z. Liu, T. F. Heinz, D. A. Reis. Disentangling interface and bulk contributions to high-harmonic emission from solids. Optica, 6, 553(2019).
[28] S. C. Jiang, H. Wei, J. G. Chen, C. Yu, R. F. Lu, C. D. Lin. Effect of transition dipole phase on high-order-harmonic generation in solid materials. Phys. Rev. A, 96, 053850(2017).
[29] S. C. Jiang, J. G. Chen, H. Wei, C. Yu, R. F. Lu, C. D. Lin. Role of the transition dipole amplitude and phase on the generation of odd and even high-order harmonics in crystals. Phys. Rev. Lett., 120, 253201(2018).
[30] D. Golde, T. Meier, S. W. Koch. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B, 77, 075330(2008).
[31] J. Y. Cao, F. S. Li, Y. Bai, P. Liu, R. X. Li. Inter-half-cycle spectral interference in high-order harmonic generation from monolayer MoS2. Opt. Express, 29, 4830(2021).
[32] A. J. Uzan-Narovlansky, A. Jimenez-Galan, G. Orenstein, R. E. F. Silva, T. Arusi-Parpar, S. Shames, B. D. Bruner, B. H. Yan, O. Smirnova, M. Ivanov, N. Dudovich. Observation of light-driven band structure via multiband high-harmonic spectroscopy. Nat. Photonics, 16, 428(2022).
[33] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan. A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460, 1101(2009).
[34] H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 5, 438(2009).
[35] Y. Bai, F. C. Fei, S. Wang, N. Li, X. L. Li, F. Q. Song, R. X. Li, Z. Z. Xu, P. Liu. High-harmonic generation from topological surface states. Nat. Phys., 17, 311(2021).
[36] C. P. Schmid, L. Weigl, P. Grossing, V. Junk, C. Gorini, S. Schlauderer, S. Ito, M. Meierhofer, N. Hofmann, D. Afanasiev, J. Crewse, K. A. Kokh, O. E. Tereshchenko, J. Gudde, F. Evers, J. Wilhelm, K. Richter, U. Hofer, R. Huber. Tunable non-integer high-harmonic generation in a topological insulator. Nature, 593, 385(2021).
[37] D. Baykusheva, A. Chacon, J. Lu, T. P. Bailey, J. A. Sobota, H. Soifer, P. S. Kirchmann, C. Rotundu, C. Uher, T. F. Heinz, D. A. Reis, S. Ghimire. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Lett., 21, 8970(2021).
[38] N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M. Y. Ivanov, D. M. Villeneuve, P. B. Corkum. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys., 2, 781(2006).
[39] P. B. Corkum. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett., 71, 1994(1993).
[40] Y. Bai, C. J. Cheng, X. L. Li, P. Liu, R. X. Li, Z. Z. Xu. Intense broadband mid-infrared pulses of 280 MV/cm for supercontinuum generation in gaseous medium. Opt. Lett., 43, 667(2018).
[41] X. He, J. M. Dahlstrom, R. Rakowski, C. M. Heyl, A. Persson, J. Mauritsson, A. L’Huillier. Interference effects in two-color high-order harmonic generation. Phys. Rev. A, 82, 033410(2010).
[42] D. Hsieh, J. W. McIver, D. H. Torchinsky, D. R. Gardner, Y. S. Lee, N. Gedik. Nonlinear optical probe of tunable surface electrons on a topological insulator. Phys. Rev. Lett., 106, 057401(2011).
[43] D. Baykusheva, A. Chacon, D. Kim, D. E. Kim, D. A. Reis, S. Ghimire. Strong-field physics in three-dimensional topological insulators. Phys. Rev. A, 103, 023101(2021).

Set citation alerts for the article
Please enter your email address