• Laser & Optoelectronics Progress
  • Vol. 59, Issue 23, 2314003 (2022)
Xuehui Yang, Zhengyan Zhang*, and shun Wang
Author Affiliations
  • School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130
  • show less
    DOI: 10.3788/LOP202259.2314003 Cite this Article Set citation alerts
    Xuehui Yang, Zhengyan Zhang, shun Wang. Simulation of Thermal Behavior of Selective Laser Melting High Strength Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2314003 Copy Citation Text show less
    Gaussian heat source model
    Fig. 1. Gaussian heat source model
    Finite-element model
    Fig. 2. Finite-element model
    Cloud map of temperature distribution of selective laser melting of aluminum alloy
    Fig. 3. Cloud map of temperature distribution of selective laser melting of aluminum alloy
    Temperature field distributions at the midpoint of the scan line. (a) Thermal cycle curve; (b) temperature gradient curve
    Fig. 4. Temperature field distributions at the midpoint of the scan line. (a) Thermal cycle curve; (b) temperature gradient curve
    Molten pool at the midpoint of the scan line. (a) Molten pool surface; (b) cross section of molten pool
    Fig. 5. Molten pool at the midpoint of the scan line. (a) Molten pool surface; (b) cross section of molten pool
    Molten pool surface at different scanning speeds. (a) 100 mm/s; (b) 500 mm/s
    Fig. 6. Molten pool surface at different scanning speeds. (a) 100 mm/s; (b) 500 mm/s
    Temperature evolution under different process parameters. (a) Different scanning speeds; (b) different laser powers
    Fig. 7. Temperature evolution under different process parameters. (a) Different scanning speeds; (b) different laser powers
    Length, width, and depth of the molten pool under the different parameters. (a) Different scanning speeds; (b) different laser powers
    Fig. 8. Length, width, and depth of the molten pool under the different parameters. (a) Different scanning speeds; (b) different laser powers
    Block print test piece
    Fig. 9. Block print test piece
    Cross section of molten pool at scaning speed of 100 mm/s
    Fig. 10. Cross section of molten pool at scaning speed of 100 mm/s
    Melt width comparison at different scanning speeds
    Fig. 11. Melt width comparison at different scanning speeds
    T /℃25100200350500
    ρ /(kg·m-³)27902780276027202680
    K /(W·m-1·℃-1158.33165.72171.60175.49173.56
    C /(J·kg-1·℃-187092096010201189
    Table 1. Physical performance parameters of 2024 aluminum alloy
    Xuehui Yang, Zhengyan Zhang, shun Wang. Simulation of Thermal Behavior of Selective Laser Melting High Strength Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2314003
    Download Citation