[1] Tan T J. On quantitative evaluation of fingerprint evidence[J]. Forensic Science and Technology, 45, 616-621(2020).
[2] Pankanti S, Prabhakar S, Jain A K. On the individuality of fingerprints[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1010-1025(2002).
[3] Smith A M, Neal T M S. The distinction between discriminability and reliability in forensic science[J]. Science & Justice, 61, 319-331(2021).
[4] Liu S Q, Luo Y P, Cai W S et al. Research on the accuracy of fingerprint identification ability test[J]. Journal of People’s Public Security University of China (Science and Technology), 21, 20-24(2015).
[5] Garrett B L, Gardner B O, Murphy E et al. Judges and forensic science education: a national survey[J]. Forensic Science International, 321, 110714(2021).
[6] Horsman G. The different types of reports produced in digital forensic investigations[J]. Science & Justice, 61, 627-634(2021).
[7] Yang Z X, Tang Y Q, Zhang J J et al. Detection algorithm of pedestrian shoe area based on improved YOLOv4[J]. Laser & Optoelectronics Progress, 59, 0810007(2022).
[8] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).
[9] Girshick R. Fast R-CNN[C], 1440-1448(2015).
[10] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C], 2980-2988(2017).
[11] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[13] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[C], 2999-3007(2017).
[14] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).
[18] Li B N, Zhao T, Wu M. Fast exact classification algorithm of massive fingerprint patterns based on capsule network[J]. Journal of University of Chinese Academy of Sciences, 37, 387-397(2020).
[19] Song D H, Tang Y, Feng J F. Aggregating minutia-centred deep convolutional features for fingerprint indexing[J]. Pattern Recognition, 88, 397-408(2019).
[20] Tang Y, Gao F, Feng J F et al. FingerNet: an unified deep network for fingerprint minutiae extraction[C], 108-116(2018).
[21] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[23] Hu J, Shen L, Sun G et al. Squeeze-and-excitation networks[C], 2011-2023(2018).
[24] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
[25] Wang K, Liu M Z. YOLOv3-MT: a YOLOv3 using multi-target tracking for vehicle visual detection[J]. Applied Intelligence, 52, 2070-2091(2022).
[26] Ran R, Xu X H, Qiu S H et al. Review of crack detection methods based on deep convolutional neural networks[J]. Computer Engineering and Applications, 57, 23-35(2021).
[27] Liu W, Zhou C, Yan P L et al. Efficient preprocessing algorithms of fingerprint images[J]. WSEAS Transactions on Information Science and Applications, 3, 1021-1027(2006).