[1] Evans D 2011 The Internet of Things: How the Next Evolution of the Internet is Changing Everything (CISCO)
[2] Atzori L, Iera A and Morabito G 2010 The internet of things: a survey Comput. Networks 54 2787–805
[3] Bonato P 2010 Wearable sensors and systems IEEE Eng. Med.Biol. Mag. 29 25–36
[4] KimDH et al 2011 Epidermal electronics Science 333 838–43
[5] Liu Z, Xu J, Chen D and Shen G Z 2015 Flexible electronics based on inorganic nanowires Chem. Soc. Rev. 44 161–92
[6] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature 529 509–14
[7] Cima M J 2014 Next-generation wearable electronics Nat. Biotechnol. 32 642–3
[8] Chortos A, Liu J and Bao Z N 2016 Pursuing prosthetic electronic skin Nat. Mater. 15 937–50
[9] Hittinger E and Jaramillo P 2019 Internet of things: energy boon or bane? Science 364 326–8
[10] Levin E, Pieraccini R and Eckert W 2000 A stochastic model of human-machine interaction for learning dialog strategies IEEE Trans. Speech Audio Process. 8 11–23
[11] Schiele A and van der Helm F C T 2006 Kinematic design to improve ergonomics in human machine interaction IEEE Trans. Neural Syst. Rehabil. Eng. 14 456–69
[12] Wang Z L 2019 Entropy theory of distributed energy for internet of things Nano Energy 58 669–72
[13] Yang Y and Wang Z L 2021 Emerging nanogenerators: powering the internet of things by high entropy energy iScience 24 102358
[14] Beeby S P, Torah R N, Tudor M J, Glynne-Jones P, O’Donnell T, Saha C R and Roy S 2007 A micro electromagnetic generator for vibration energy harvesting J. Micromech. Microeng. 17 1257–65
[15] Saha C R, O’Donnell T, Wang N and McCloskey P 2008 Electromagnetic generator for harvesting energy from human motion Sens. Actuators A 147 248–53
[16] Zhu D B, Roberts S, Tudor M J and Beeby S P 2010 Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator Sens. Actuators A 158 284–93
[17] El-Khattam W and Salama M M A 2004 Distributed generation technologies, definitions and benefits Electr. Power Syst. Res. 71 119–28
[18] Kammen D M and Sunter D A 2016 City-integrated renewable energy for urban sustainability Science 352 922–8
[19] Erturk A, Hoffmann J and Inman D J 2009 A piezomagnetoelastic structure for broadband vibration energy harvesting Appl. Phys. Lett. 94 254102
[20] Beeby S P, Tudor M J and White N M 2006 Energy harvesting vibration sources for microsystems applications Meas. Sci. Technol. 17 R175–95
[21] Chen G R, Li Y Z, Bick M and Chen J 2020 Smart textiles for electricity generation Chem. Rev. 120 3668–720
[22] Zhao X, Askari H and Chen J 2021 Nanogenerators for smart cities in the era of 5G and internet of things Joule 5 1391–431
[23] Chen G R, Zhou Y H, Fang Y S, Zhao X, Shen S, Tat T, Nashalian A and Chen J 2021 Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system ACS Nano 15 20582–9
[24] Zhao X et al 2022 A soft magnetoelastic generator for wind-energy harvesting Adv. Mater. 34 2204238
[25] Ock I W, Zhao X, Tat T, Xu J and Chen J 2022 Harvesting hydropower via a magnetoelastic generator for sustainable water splitting ACS Nano 16 16816–23
[26] Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generator Nano Energy 1 328–34
[27] Wang Z L and Wang A C 2019 On the origin of contact-electrification Mater. Today 30 34–51
[28] Niu S M and Wang Z L 2015 Theoretical systems of triboelectric nanogenerators Nano Energy 14 161–92
[29] LiuWB,XuL,LiuGX,YangH,BuTZ,FuXP, Xu SH, Fang C L and Zhang C 2020 Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy iScience 23 101848
[30] Zhang R Y and Olin H 2020 Material choices for triboelectric nanogenerators: a critical review EcoMat 2 e12062
[31] PangYK,LiXH,ChenMX,HanCB,ZhangCand Wang Z L 2015 Triboelectric nanogenerators as a self-powered 3D acceleration sensor ACS Appl. Mater. Interfaces 7 19076–82
[32] FuJJ,XuGQ,LiCH,XiaX,GuanD,LiJ,HuangZYand Zi Y L 2020 Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment Adv. Sci. 7 2001757
[33] WangJ,Wu CS,DaiYJ,ZhaoZH,WangA,ZhangTJand Wang Z L 2017 Achieving ultrahigh triboelectric charge density for efficient energy harvesting Nat. Commun. 8 88
[34] Yang H M, Fan F R, Xi Y and Wu W Z 2021 Design and engineering of high-performance triboelectric nanogenerator for ubiquitous unattended devices EcoMat 3 e12093
[35] Xu L, Bu T Z, Yang X D, Zhang C and Wang Z L 2018 Nano energy ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators Nano Energy 49 625–33
[36] Luo J J and Wang Z L 2020 Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications EcoMat 2 e12059
[37] Zhang C, Zhang L M, Tang W, Han C B and Wang Z L 2015 Tribotronic logic circuits and basic operations Adv. Mater. 27 3533–40
[38] Zhang C, Tang W, Han C B, Fan F R and Wang Z L 2014 Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy Adv. Mater. 26 3580–91 20
[39] XiFB,PangYK,LiW, JiangT, ZhangLM,GuoT, LiuGX, Zhang C and Wang Z L 2017 Universal power management strategy for triboelectric nanogenerator Nano Energy 37 168–76
[40] XiFB,PangYK,LiuGX,WangSW, LiW, ZhangCand Wang Z L 2019 Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission Nano Energy 61 1–9
[41] Liu J, Goswami A, Jiang K R, Khan F, Kim S, McGee R, Li Z, Hu Z, Lee J and Thundat T 2018 Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers Nat. Nanotechnol. 13 112–6
[42] LinSS,ShenRJ,Yao TY, LuYH,FengSR,HaoZZ, Zheng H N, Yan Y F and Li E P 2019 Surface states enhanced dynamic Schottky diode generator with extremely high power density over 1000 w m.2 Adv. Sci. 6 1901925
[43] Song Y D, Wang N, Fadlallah M M, Tao S X, Yang Y and Wang Z L 2021 Defect states contributed nanoscale contact electrification at ZnO nanowires packed film surfaces Nano Energy 79 105406
[44] XuGQ,GuanD,YinX,FuJJ,WangJandZiYL2020A coplanar-electrode direct-current triboelectric nanogenerator with facile fabrication and stable output EcoMat 2 e12037
[45] ZhaoZH,ZhouLL,LiSX,LiuD,LiYH,GaoYK, Liu Y B, Dai Y J, Wang J and Wang Z L 2021 Selection rules of triboelectric materials for direct-current triboelectric nanogenerator Nat. Commun. 12 4686
[46] Zhang Z, Jiang D D, Zhao J Q, Liu G X, Bu T Z, Zhang C and Wang Z L 2020 Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators Adv. Energy Mater. 10 1903713
[47] LiuJ,CheikhMI,BaoRM,PengHH,LiuFF, LiZ, Jiang K R, Chen J and Thundat T 2019 Tribo-tunneling DC generator with carbon aerogel/silicon multi-nanocontacts Adv. Electron. Mater. 5 1900464
[48] LuYH,HaoZZ,FengSR,ShenRJ,Yan YFandLinSS 2019 Direct-current generator based on dynamic PN junctions with the designed voltage output iScience 22 58–69
[49] Blok H 1963 The flash temperature concept Wear 6 483–94
[50] Sutter G and Ranc N 2010 Flash temperature measurement during dry friction process at high sliding speed Wear 268 1237–42
[51] Kalin M 2004 Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review Mater. Sci. Eng. A 374 390–7
[52] Abdel-Aal H A 1997 A remark on the flash temperature theory Int. Commun. Heat Mass Transfer 24 241–50
[53] Sharov V A, Alekseev P A, Borodin B R, Dunaevskiy M S, Reznik R R and Cirlin G E 2019 InP/Si heterostructure for high-current hybrid triboelectric/photovoltaic generation ACS Appl. Energy Mater. 2 4395–401
[54] Xu R, Zhang Q, Wang J Y, Liu D, Wang J and Wang Z L 2019 Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor Nano Energy 66 104185
[55] Zhang Z, Wang Z Z, Chen Y K, Feng Y, Dong S C, Zhou H, Wang Z L and Zhang C 2022 Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation Adv. Mater. 34 2200146
[56] Yuan H,XiaoZX,Wan JX,XiangY, DaiGZ,LiHJand Yang J L 2022 A rolling-mode Al/CsPbBr3 Schottky junction direct-current triboelectric nanogenerator for harvesting mechanical and solar energy Adv. Energy Mater. 12 2200550
[57] Yang R Z, Benner M, Guo Z P, Zhou C and Liu J 2021 High-performance flexible Schottky DC generator via metal/conducting polymer sliding contacts Adv. Funct. Mater. 31 2103132
[58] HuangXY, XiangXJ,NieJH,PengDL,YangFW, Wu ZH, Jiang H Y, Xu Z P and Zheng Q S 2021 Microscale Schottky superlubric generator with high direct-current density and ultralong life Nat. Commun. 12 2268
[59] LuLY et al 2021 Polarized water driven dynamic pn junction-based direct-current generator Research 2021 7505638
[60] Wang Z Z, Zhang Z, Chen Y K, Gong L K, Dong S C, Zhou H, Lin Y, Lv Y, Liu G X and Zhang C 2022 Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect Energy Environ. Sci. 15 2366–73
[61] You Z et al 2022 High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction Nano Energy 91 106667
[62] Chen J, He P, Huang T, Zhang D H, Wang G, Yang S W, Xie X M and Ding G Q 2021 Boosting carrier transfer at flexible Schottky junctions with moisture: a strategy for high-performance wearable direct-current nanogenerators Nano Energy 90 106593
[63] QiaoWY, ZhaoZH,ZhouLL,LiuD,LiSX,YangPY, LiX Y, Liu J Q, WangJandWangZ L2022 Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication Adv. Funct. Mater. 32 2208544
[64] LuoXX,LiuLD,WangYC,LiJY, BerbilleA,ZhuLPand Wang Z L 2022 Tribovoltaic nanogenerators based on MXene-silicon heterojunctions for highly stable self-powered speed, displacement, tension, oscillation angle, and vibration sensors Adv. Funct. Mater. 32 2113149
[65] ZhaoJQ,GuoH,PangYK,XiFB,YangZW, LiuGX, Guo T, Dong G F, Zhang C and Wang Z L 2017 Flexible organic tribotronic transistor for pressure and magnetic sensing ACS Nano 11 11566–73
[66] BuTZ,XuL,YangZW, YangX,LiuGX,CaoYZ,ZhangC and Wang Z L 2020 Nanoscale triboelectrification gated transistor Nat. Commun. 11 1054
[67] ZhaoJQ,BuTZ,ZhangXH,PangYK, LiWJ,ZhangZ, Liu G X, Wang Z L and Zhang C 2020 Intrinsically stretchable organic-tribotronic-transistor for tactile sensing Research 2020 1398903
[68] Li J, Zhang C, Duan L, Zhang L M, Wang L D, Dong G F and Wang Z L 2016 Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system Adv. Mater. 28 106–10
[69] CaoYZ,BuTZ,FangCL,ZhangC,HuangXDand Zhang C 2020 High-resolution monolithic integrated tribotronic InGaZnO thin-film transistor array for tactile detection Adv. Funct. Mater. 30 2002613
[70] Yang Z W, Pang Y K, Zhang L M, Lu C X, Chen J, Zhou T, Zhang C and Wang Z L 2016 Tribotronic transistor array as an active tactile sensing system ACS Nano 10 10912–20
[71] Pang Y K, Li J, Zhou T, Yang Z W, Luo J J, Zhang L M, Dong G F, Zhang C and Wang Z L 2017 Flexible transparent tribotronic transistor for active modulation of conventional electronics Nano Energy 31 533–40
[72] Zhang L M, Yang Z W, Pang Y K, Zhou T, Zhang C and Wang Z L 2017 Tribotronic triggers and sequential logic circuits Nano Res. 10 3534–42
[73] Zhou T, Yang Z W, Pang Y K, Xu L, Zhang C and Wang Z L 2017 Tribotronic tuning diode for active analog signal modulation ACS Nano 11 882–8
[74] ZiYL,NiuSM,WangJ,Wen Z,TangWandWangZL2015 Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators Nat. Commun. 6 8376 21
[75] FuJJ,XiaX,XuGQ,LiXYandZiYL2019Onthe maximal output energy density of nanogenerators ACS Nano 13 13257–63
[76] ZiYL,WangJ,WangSH,LiSM,Wen Z,GuoHYand Wang Z L 2016 Effective energy storage from a triboelectric nanogenerator Nat. Commun. 7 10987
[77] Zhang H M, Marty F, Xia X, Zi Y L, Bourouina T, Galayko D and Basset P 2020 Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters Nat. Commun. 11 3221
[78] SongY, WangHB,ChengXL,LiGK,ChenXX,ChenHT, Miao L M, Zhang X S and Zhang H X 2019 High-efficiency self-charging smart bracelet for portable electronics Nano Energy 55 29–36
[79] Graham S A, Chandrarathna S C, Patnam H, Manchi P, Lee J W and Yu J S 2021 Harsh environment-tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home Nano Energy 80 105547
[80] NiuSM,WangXF, YiF, ZhouYSandWangZL2015A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics Nat. Commun. 6 8975
[81] LiuGX,XuSH,LiuYY, GaoYY, TongT, QiYCand Zhang C 2020 Flexible drug release device powered by triboelectric nanogenerator Adv. Funct. Mater. 30 1909886
[82] Xu F et al 2021 Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics Nano Energy 88 106247
[83] ZhangXH,ZhaoJQ,FuXP, LinY, QiYC,ZhouHand Zhang C 2022 Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators Nano Energy 98 107209
[84] FuXP, XuSH,GaoYY, ZhangXH,LiuGX,ZhouH,LvY, Zhang C and Wang Z L 2021 Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification ACS Energy Lett. 6 2343–50
[85] FuJJ,XuGQ,Wu H,LiCYandZiYL2022 Liquid-interfaces-based triboelectric nanogenerator: an emerging power generation method from liquid-energy nexus Adv. Energy Sustain. Res. 3 2200051
[86] WangLL,SongYX,XuWH,LiWB,JinYK,Gao SW, Yang S Y, Wu C Y, Wang S and Wang Z K 2021 Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator EcoMat 3 e12116
[87] XuCQ,FuXP, LiCY, LiuGX,GaoYY, QiYC,BuTZ, Chen Y F, Wang Z L and Zhang C 2022 Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification Microsyst. Nanoeng. 8 30
[88] Liang X, Jiang T, Liu G X, Feng Y W, Zhang C and Wang Z L 2020 Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy Energy Environ. Sci. 13 277–85
[89] Zhang C, Tang W, Zhang L M, Han C B and Wang Z L 2014 Contact electrification field-effect transistor ACS Nano 8 8702–9 22