• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 4, 42002 (2023)
1,2, 1,2, 1,2, 1,2..., 1,2 and 1,2|Show fewer author(s)
Author Affiliations
  • 1CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, People’s Republic of China
  • 2School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ace669 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Tribotronics: an emerging field by coupling triboelectricity and semiconductors[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42002 Copy Citation Text show less
    References

    [1] Evans D 2011 The Internet of Things: How the Next Evolution of the Internet is Changing Everything (CISCO)

    [2] Atzori L, Iera A and Morabito G 2010 The internet of things: a survey Comput. Networks 54 2787–805

    [3] Bonato P 2010 Wearable sensors and systems IEEE Eng. Med.Biol. Mag. 29 25–36

    [4] KimDH et al 2011 Epidermal electronics Science 333 838–43

    [5] Liu Z, Xu J, Chen D and Shen G Z 2015 Flexible electronics based on inorganic nanowires Chem. Soc. Rev. 44 161–92

    [6] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature 529 509–14

    [7] Cima M J 2014 Next-generation wearable electronics Nat. Biotechnol. 32 642–3

    [8] Chortos A, Liu J and Bao Z N 2016 Pursuing prosthetic electronic skin Nat. Mater. 15 937–50

    [9] Hittinger E and Jaramillo P 2019 Internet of things: energy boon or bane? Science 364 326–8

    [10] Levin E, Pieraccini R and Eckert W 2000 A stochastic model of human-machine interaction for learning dialog strategies IEEE Trans. Speech Audio Process. 8 11–23

    [11] Schiele A and van der Helm F C T 2006 Kinematic design to improve ergonomics in human machine interaction IEEE Trans. Neural Syst. Rehabil. Eng. 14 456–69

    [12] Wang Z L 2019 Entropy theory of distributed energy for internet of things Nano Energy 58 669–72

    [13] Yang Y and Wang Z L 2021 Emerging nanogenerators: powering the internet of things by high entropy energy iScience 24 102358

    [14] Beeby S P, Torah R N, Tudor M J, Glynne-Jones P, O’Donnell T, Saha C R and Roy S 2007 A micro electromagnetic generator for vibration energy harvesting J. Micromech. Microeng. 17 1257–65

    [15] Saha C R, O’Donnell T, Wang N and McCloskey P 2008 Electromagnetic generator for harvesting energy from human motion Sens. Actuators A 147 248–53

    [16] Zhu D B, Roberts S, Tudor M J and Beeby S P 2010 Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator Sens. Actuators A 158 284–93

    [17] El-Khattam W and Salama M M A 2004 Distributed generation technologies, definitions and benefits Electr. Power Syst. Res. 71 119–28

    [18] Kammen D M and Sunter D A 2016 City-integrated renewable energy for urban sustainability Science 352 922–8

    [19] Erturk A, Hoffmann J and Inman D J 2009 A piezomagnetoelastic structure for broadband vibration energy harvesting Appl. Phys. Lett. 94 254102

    [20] Beeby S P, Tudor M J and White N M 2006 Energy harvesting vibration sources for microsystems applications Meas. Sci. Technol. 17 R175–95

    [21] Chen G R, Li Y Z, Bick M and Chen J 2020 Smart textiles for electricity generation Chem. Rev. 120 3668–720

    [22] Zhao X, Askari H and Chen J 2021 Nanogenerators for smart cities in the era of 5G and internet of things Joule 5 1391–431

    [23] Chen G R, Zhou Y H, Fang Y S, Zhao X, Shen S, Tat T, Nashalian A and Chen J 2021 Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system ACS Nano 15 20582–9

    [24] Zhao X et al 2022 A soft magnetoelastic generator for wind-energy harvesting Adv. Mater. 34 2204238

    [25] Ock I W, Zhao X, Tat T, Xu J and Chen J 2022 Harvesting hydropower via a magnetoelastic generator for sustainable water splitting ACS Nano 16 16816–23

    [26] Fan F R, Tian Z Q and Wang Z L 2012 Flexible triboelectric generator Nano Energy 1 328–34

    [27] Wang Z L and Wang A C 2019 On the origin of contact-electrification Mater. Today 30 34–51

    [28] Niu S M and Wang Z L 2015 Theoretical systems of triboelectric nanogenerators Nano Energy 14 161–92

    [29] LiuWB,XuL,LiuGX,YangH,BuTZ,FuXP, Xu SH, Fang C L and Zhang C 2020 Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy iScience 23 101848

    [30] Zhang R Y and Olin H 2020 Material choices for triboelectric nanogenerators: a critical review EcoMat 2 e12062

    [31] PangYK,LiXH,ChenMX,HanCB,ZhangCand Wang Z L 2015 Triboelectric nanogenerators as a self-powered 3D acceleration sensor ACS Appl. Mater. Interfaces 7 19076–82

    [32] FuJJ,XuGQ,LiCH,XiaX,GuanD,LiJ,HuangZYand Zi Y L 2020 Achieving ultrahigh output energy density of triboelectric nanogenerators in high-pressure gas environment Adv. Sci. 7 2001757

    [33] WangJ,Wu CS,DaiYJ,ZhaoZH,WangA,ZhangTJand Wang Z L 2017 Achieving ultrahigh triboelectric charge density for efficient energy harvesting Nat. Commun. 8 88

    [34] Yang H M, Fan F R, Xi Y and Wu W Z 2021 Design and engineering of high-performance triboelectric nanogenerator for ubiquitous unattended devices EcoMat 3 e12093

    [35] Xu L, Bu T Z, Yang X D, Zhang C and Wang Z L 2018 Nano energy ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators Nano Energy 49 625–33

    [36] Luo J J and Wang Z L 2020 Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications EcoMat 2 e12059

    [37] Zhang C, Zhang L M, Tang W, Han C B and Wang Z L 2015 Tribotronic logic circuits and basic operations Adv. Mater. 27 3533–40

    [38] Zhang C, Tang W, Han C B, Fan F R and Wang Z L 2014 Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy Adv. Mater. 26 3580–91 20

    [39] XiFB,PangYK,LiW, JiangT, ZhangLM,GuoT, LiuGX, Zhang C and Wang Z L 2017 Universal power management strategy for triboelectric nanogenerator Nano Energy 37 168–76

    [40] XiFB,PangYK,LiuGX,WangSW, LiW, ZhangCand Wang Z L 2019 Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission Nano Energy 61 1–9

    [41] Liu J, Goswami A, Jiang K R, Khan F, Kim S, McGee R, Li Z, Hu Z, Lee J and Thundat T 2018 Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers Nat. Nanotechnol. 13 112–6

    [42] LinSS,ShenRJ,Yao TY, LuYH,FengSR,HaoZZ, Zheng H N, Yan Y F and Li E P 2019 Surface states enhanced dynamic Schottky diode generator with extremely high power density over 1000 w m.2 Adv. Sci. 6 1901925

    [43] Song Y D, Wang N, Fadlallah M M, Tao S X, Yang Y and Wang Z L 2021 Defect states contributed nanoscale contact electrification at ZnO nanowires packed film surfaces Nano Energy 79 105406

    [44] XuGQ,GuanD,YinX,FuJJ,WangJandZiYL2020A coplanar-electrode direct-current triboelectric nanogenerator with facile fabrication and stable output EcoMat 2 e12037

    [45] ZhaoZH,ZhouLL,LiSX,LiuD,LiYH,GaoYK, Liu Y B, Dai Y J, Wang J and Wang Z L 2021 Selection rules of triboelectric materials for direct-current triboelectric nanogenerator Nat. Commun. 12 4686

    [46] Zhang Z, Jiang D D, Zhao J Q, Liu G X, Bu T Z, Zhang C and Wang Z L 2020 Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators Adv. Energy Mater. 10 1903713

    [47] LiuJ,CheikhMI,BaoRM,PengHH,LiuFF, LiZ, Jiang K R, Chen J and Thundat T 2019 Tribo-tunneling DC generator with carbon aerogel/silicon multi-nanocontacts Adv. Electron. Mater. 5 1900464

    [48] LuYH,HaoZZ,FengSR,ShenRJ,Yan YFandLinSS 2019 Direct-current generator based on dynamic PN junctions with the designed voltage output iScience 22 58–69

    [49] Blok H 1963 The flash temperature concept Wear 6 483–94

    [50] Sutter G and Ranc N 2010 Flash temperature measurement during dry friction process at high sliding speed Wear 268 1237–42

    [51] Kalin M 2004 Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review Mater. Sci. Eng. A 374 390–7

    [52] Abdel-Aal H A 1997 A remark on the flash temperature theory Int. Commun. Heat Mass Transfer 24 241–50

    [53] Sharov V A, Alekseev P A, Borodin B R, Dunaevskiy M S, Reznik R R and Cirlin G E 2019 InP/Si heterostructure for high-current hybrid triboelectric/photovoltaic generation ACS Appl. Energy Mater. 2 4395–401

    [54] Xu R, Zhang Q, Wang J Y, Liu D, Wang J and Wang Z L 2019 Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor Nano Energy 66 104185

    [55] Zhang Z, Wang Z Z, Chen Y K, Feng Y, Dong S C, Zhou H, Wang Z L and Zhang C 2022 Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation Adv. Mater. 34 2200146

    [56] Yuan H,XiaoZX,Wan JX,XiangY, DaiGZ,LiHJand Yang J L 2022 A rolling-mode Al/CsPbBr3 Schottky junction direct-current triboelectric nanogenerator for harvesting mechanical and solar energy Adv. Energy Mater. 12 2200550

    [57] Yang R Z, Benner M, Guo Z P, Zhou C and Liu J 2021 High-performance flexible Schottky DC generator via metal/conducting polymer sliding contacts Adv. Funct. Mater. 31 2103132

    [58] HuangXY, XiangXJ,NieJH,PengDL,YangFW, Wu ZH, Jiang H Y, Xu Z P and Zheng Q S 2021 Microscale Schottky superlubric generator with high direct-current density and ultralong life Nat. Commun. 12 2268

    [59] LuLY et al 2021 Polarized water driven dynamic pn junction-based direct-current generator Research 2021 7505638

    [60] Wang Z Z, Zhang Z, Chen Y K, Gong L K, Dong S C, Zhou H, Lin Y, Lv Y, Liu G X and Zhang C 2022 Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect Energy Environ. Sci. 15 2366–73

    [61] You Z et al 2022 High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction Nano Energy 91 106667

    [62] Chen J, He P, Huang T, Zhang D H, Wang G, Yang S W, Xie X M and Ding G Q 2021 Boosting carrier transfer at flexible Schottky junctions with moisture: a strategy for high-performance wearable direct-current nanogenerators Nano Energy 90 106593

    [63] QiaoWY, ZhaoZH,ZhouLL,LiuD,LiSX,YangPY, LiX Y, Liu J Q, WangJandWangZ L2022 Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication Adv. Funct. Mater. 32 2208544

    [64] LuoXX,LiuLD,WangYC,LiJY, BerbilleA,ZhuLPand Wang Z L 2022 Tribovoltaic nanogenerators based on MXene-silicon heterojunctions for highly stable self-powered speed, displacement, tension, oscillation angle, and vibration sensors Adv. Funct. Mater. 32 2113149

    [65] ZhaoJQ,GuoH,PangYK,XiFB,YangZW, LiuGX, Guo T, Dong G F, Zhang C and Wang Z L 2017 Flexible organic tribotronic transistor for pressure and magnetic sensing ACS Nano 11 11566–73

    [66] BuTZ,XuL,YangZW, YangX,LiuGX,CaoYZ,ZhangC and Wang Z L 2020 Nanoscale triboelectrification gated transistor Nat. Commun. 11 1054

    [67] ZhaoJQ,BuTZ,ZhangXH,PangYK, LiWJ,ZhangZ, Liu G X, Wang Z L and Zhang C 2020 Intrinsically stretchable organic-tribotronic-transistor for tactile sensing Research 2020 1398903

    [68] Li J, Zhang C, Duan L, Zhang L M, Wang L D, Dong G F and Wang Z L 2016 Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system Adv. Mater. 28 106–10

    [69] CaoYZ,BuTZ,FangCL,ZhangC,HuangXDand Zhang C 2020 High-resolution monolithic integrated tribotronic InGaZnO thin-film transistor array for tactile detection Adv. Funct. Mater. 30 2002613

    [70] Yang Z W, Pang Y K, Zhang L M, Lu C X, Chen J, Zhou T, Zhang C and Wang Z L 2016 Tribotronic transistor array as an active tactile sensing system ACS Nano 10 10912–20

    [71] Pang Y K, Li J, Zhou T, Yang Z W, Luo J J, Zhang L M, Dong G F, Zhang C and Wang Z L 2017 Flexible transparent tribotronic transistor for active modulation of conventional electronics Nano Energy 31 533–40

    [72] Zhang L M, Yang Z W, Pang Y K, Zhou T, Zhang C and Wang Z L 2017 Tribotronic triggers and sequential logic circuits Nano Res. 10 3534–42

    [73] Zhou T, Yang Z W, Pang Y K, Xu L, Zhang C and Wang Z L 2017 Tribotronic tuning diode for active analog signal modulation ACS Nano 11 882–8

    [74] ZiYL,NiuSM,WangJ,Wen Z,TangWandWangZL2015 Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators Nat. Commun. 6 8376 21

    [75] FuJJ,XiaX,XuGQ,LiXYandZiYL2019Onthe maximal output energy density of nanogenerators ACS Nano 13 13257–63

    [76] ZiYL,WangJ,WangSH,LiSM,Wen Z,GuoHYand Wang Z L 2016 Effective energy storage from a triboelectric nanogenerator Nat. Commun. 7 10987

    [77] Zhang H M, Marty F, Xia X, Zi Y L, Bourouina T, Galayko D and Basset P 2020 Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters Nat. Commun. 11 3221

    [78] SongY, WangHB,ChengXL,LiGK,ChenXX,ChenHT, Miao L M, Zhang X S and Zhang H X 2019 High-efficiency self-charging smart bracelet for portable electronics Nano Energy 55 29–36

    [79] Graham S A, Chandrarathna S C, Patnam H, Manchi P, Lee J W and Yu J S 2021 Harsh environment-tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home Nano Energy 80 105547

    [80] NiuSM,WangXF, YiF, ZhouYSandWangZL2015A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics Nat. Commun. 6 8975

    [81] LiuGX,XuSH,LiuYY, GaoYY, TongT, QiYCand Zhang C 2020 Flexible drug release device powered by triboelectric nanogenerator Adv. Funct. Mater. 30 1909886

    [82] Xu F et al 2021 Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics Nano Energy 88 106247

    [83] ZhangXH,ZhaoJQ,FuXP, LinY, QiYC,ZhouHand Zhang C 2022 Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators Nano Energy 98 107209

    [84] FuXP, XuSH,GaoYY, ZhangXH,LiuGX,ZhouH,LvY, Zhang C and Wang Z L 2021 Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification ACS Energy Lett. 6 2343–50

    [85] FuJJ,XuGQ,Wu H,LiCYandZiYL2022 Liquid-interfaces-based triboelectric nanogenerator: an emerging power generation method from liquid-energy nexus Adv. Energy Sustain. Res. 3 2200051

    [86] WangLL,SongYX,XuWH,LiWB,JinYK,Gao SW, Yang S Y, Wu C Y, Wang S and Wang Z K 2021 Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator EcoMat 3 e12116

    [87] XuCQ,FuXP, LiCY, LiuGX,GaoYY, QiYC,BuTZ, Chen Y F, Wang Z L and Zhang C 2022 Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification Microsyst. Nanoeng. 8 30

    [88] Liang X, Jiang T, Liu G X, Feng Y W, Zhang C and Wang Z L 2020 Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy Energy Environ. Sci. 13 277–85

    [89] Zhang C, Tang W, Zhang L M, Han C B and Wang Z L 2014 Contact electrification field-effect transistor ACS Nano 8 8702–9 22

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Tribotronics: an emerging field by coupling triboelectricity and semiconductors[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42002
    Download Citation