• Photonics Research
  • Vol. 11, Issue 3, 476 (2023)
Xiaoxian He1, Xiangru Wang1,*, Yulin Zhao2, Rusheng Zhuo1, and Feng Liang2
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.1364/PRJ.482956 Cite this Article Set citation alerts
    Xiaoxian He, Xiangru Wang, Yulin Zhao, Rusheng Zhuo, Feng Liang, "Field programmable topological edge array," Photonics Res. 11, 476 (2023) Copy Citation Text show less
    References

    [1] N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett., 27, 1592-1594(2002).

    [2] Z. Yu, Z. Wang, S. Fan. One-way total reflection with one-dimensional magneto-optical photonic crystals. Appl. Phys. Lett., 90, 426(2007).

    [3] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, S. Anand. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett., 93, 073902(2004).

    [4] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis. Negative refraction by photonic crystals. Nature, 423, 604-605(2003).

    [5] C. Chen, A. Sharkawy, D. Pustai, S. Shi, D. Prather. Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides. Opt Express, 11, 3153-3159(2003).

    [6] S. G. Lee, S. S. Oh, J. E. Kim, H. Y. Park, C. S. Kee. Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals. Appl. Phys. Lett., 87, 181106(2005).

    [7] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [8] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kante. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [9] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [10] Z. Bo, H. Zhong, Y. Ke, X. Qin, A. A. Sukhorukov, C. Lee, Y. S. Kivshar. Topological Floquet edge states in periodically curved waveguides. Phys. Rev. A, 98, 013855(2018).

    [11] X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, J. W. Dong. A silicon-on-insulator slab for topological valley transport. Nat Commun, 10, 1-9(2019).

    [12] X. D. Chen, W. M. Deng, F. L. Shi, F. L. Zhao, J. W. Dong. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett., 122, 233902(2019).

    [13] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, G. Bahl. Demonstration of a quantized microwave quadrupole insulator with topologically protected corner states. Nature, 555, 346-350(2017).

    [14] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [15] X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, W. Wen. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat Commun, 8, 1-9(2017).

    [16] J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, X. Zhang. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [17] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [18] F. Gao, H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong, G. Shvets, B. Zhang. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys., 14, 140-144(2018).

    [19] H. Xue, Y. Yang, B. Zhang. Topological valley photonics: physics and device applications. Photon. Res., 2, 2100013(2021).

    [20] J. W. You, Q. Ma, Z. Lan, Q. Xiao, N. C. Panoiu, T. J. Cui. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 1-7(2021).

    [21] J. P. Xia, D. Jia, H. X. Sun, S. Q. Yuan, Y. Ge, Q. R. Si, X. J. Liu. Programmable coding acoustic topological insulator. Adv. Mater., 30, 1805002(2018).

    [22] C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, Q. Gong. Thermo‐optical tunable ultracompact chip‐integrated 1D photonic topological insulator. Adv. Opt. Mater., 6, 1701071(2018).

    [23] D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, Y. S. Kivshar. Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett., 121, 163901(2018).

    [24] M. I. Shalaev, W. Walasik, N. M. Litchinitser. Optically tunable topological photonic crystal. Optica, 6, 839-844(2019).

    [25] M. I. Shalaev, S. Desnavi, W. Walasik, N. M. Litchinitser. Reconfigurable topological photonic crystal. New J. Phys., 20, 023040(2017).

    [26] X. He, X. Wang, L. Wu, X. Liu, J. Cao. Aperture scalable liquid crystal optically duplicated array of phased array. Opt. Commun., 451, 174-180(2019).

    [27] P. Chen, Z. X. Shen, C. T. Xu, Y. H. Zhang, S. J. Ge, L. L. Ma, W. Hu, Y. Q. Lu. Simultaneous realization of dynamic and hybrid multiplexed holography via light‐activated chiral superstructures. Laser Photon. Rev., 16, 2200011(2022).

    [28] S. T. Wu, A. Y. G. Fuh, S. J. Ho, M. S. Li. Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic. Appl. Phys. B, 118, 379-385(2015).

    [29] Y. Wang, W. Zhang, X. Zhang. Tunable topological valley transport in two-dimensional photonic crystals. New J. Phys., 21, 093020(2019).

    [30] Y. Liu, J. Wang, D. Yang, Y. Wang, X. Zhang, F. Hassan, Y. Li, X. Zhang, J. Xu. Plasmon-induced transparency in a reconfigurable composite valley photonic crystal. Opt. Express, 30, 4381-4391(2022).

    [31] Y. Zhao, F. Liang, X. Wang, D. Zhao, B. Z. Wang. Tunable and programmable topological valley transport in photonic crystals with liquid crystals. J. Phys. D, 55, 155102(2022).

    [32] W. Hu, J. Hu, Y. Xiang, S. C. Wen. Dynamically reconfigurable topological states in photonic crystals with liquid crystals. Opt. Lett., 46, 2589-2592(2021).

    [33] H. Abbaszadeh, M. Fruchart, W. V. Saarloos, V. Vitelli. Liquid-crystal-based topological photonics. Proc. Natl. Acad. Sci. USA, 118, e2020525118(2021).

    [34] Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, G. I. Konishi. The design of liquid crystalline bistolane-based materials with extremely high birefringence. RSC Adv., 6, 92845-92851(2016).

    [35] K. Okano, A. Shishido, T. Ikeda. An azotolane liquid‐crystalline polymer exhibiting extremely large birefringence and its photoresponsive behavior. Adv. Mater., 18, 523-527(2006).

    [36] Y.-M. Liao, H.-L. Chen, C.-S. Hsu, S. Gauza, S.-T. Wu. Synthesis and mesomorphic properties of super high birefringence isothiocyanato bistolane liquid crystals. Liq. Cryst., 34, 507-517(2007).

    [37] X. L. Guan, L. Y. Zhang, Z. L. Zhang, Z. Shen, X. F. Chen, X. H. Fan, Q.-F. Zhou. Synthesis and properties of novel liquid crystalline materials with super high birefringence: styrene monomers bearing diacetylenes, naphthyl, and nitrogen-containing groups. Tetrahedron, 65, 3728-3732(2009).

    [38] S. M. Trimberger. Field-Programmable Gate Array Technology(2012).

    [39] A. B. Khanikaev, S. Mousavi Hossein, W. K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [40] T. Ma, A. B. Khanikaev, S. H. Mousavi, G. Shvets. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett., 114, 127401(2015).

    [41] F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, B. Zhang. Probing topological protection using a designer surface plasmon structure. Nat. Commun., 7, 1-9(2016).

    [42] M. Ezawa. Symmetry protected topological charge in symmetry broken phase: spin-Chern, spin-valley-Chern and mirror-Chern numbers. Phys. Lett. A, 378, 1180-1184(2014).

    [43] X. L. Qi, Y. S. Wu, S. C. Zhang. General theorem relating the bulk topological number to edge states in two-dimensional insulators. Phys. Rev. B, 74, 045125(2006).

    [44] Y. Yang, Y. F. Xu, T. Xu, H. X. Wang, J. H. Jiang, X. Hu, Z. H. Hang. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett., 120, 217401(2018).

    [45] S. T. Wu. Fundamentals of Liquid Crystal Devices(2006).

    [46] Y. J. Liu, G. Y. Si, E. S. P. Leong, B. Wang, A. J. Danner, X. C. Yuan, J. H. Teng. Optically tunable plasmonic color filters. Appl. Phys. A, 107, 49-54(2012).

    [47] K. T. Kim, N. I. Moon, H. K. Kim. A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate. Sens. Actuat. A Phys., 160, 19-21(2010).

    [48] J. Li, S. Gauza, S. T. Wu. Temperature effect on liquid crystal refractive indices. J. Appl. Phys., 96, 19-24(2004).

    [49] K. D. Thingujama, S. D. Sarkara, B. Choudhurya, A. Bhattacharjeea. Effect of temperature on the refractive indices of liquid crystals and validation of a modified four-parameter model. Acta Phys. Pol. A, 122, 754(2012).

    [50] L. J. Chen, J. D. Lin, C. R. Lee. An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser. J. Mater. Chem. C, 2, 4388-4394(2014).

    [51] Y. Yu, T. Ikeda. Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions. J. Photochem. Photobiol. C, 5, 247-265(2004).

    [52] L. He, H. Ji, Y. Wang, X. Zhang. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt. Express, 28, 34015-34023(2020).

    [53] S. Ma, S. M. Anlage. Microwave applications of photonic topological insulators. Appl. Phys. Lett., 116, 250502(2020).