• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2210003 (2022)
Wanjun Liu1, Yitong Li2,*, and Wentao Jiang1
Author Affiliations
  • 1College of Software, Liaoning Technical University, Huludao 125105, Liaoning, China
  • 2Graduate School, Liaoning Technical University, Huludao 125105, Liaoning, China
  • show less
    DOI: 10.3788/LOP202259.2210003 Cite this Article Set citation alerts
    Wanjun Liu, Yitong Li, Wentao Jiang. Research on High-Confidence Adaptive Feature Fusion Tracking[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210003 Copy Citation Text show less
    Tracking images in different states and corresponding foreground and background color probability maps. (a) Original image; (b) foreground color probability map; (c) background color probability map
    Fig. 1. Tracking images in different states and corresponding foreground and background color probability maps. (a) Original image; (b) foreground color probability map; (c) background color probability map
    Logarithmic loss function graph
    Fig. 2. Logarithmic loss function graph
    Partial tracking framework
    Fig. 3. Partial tracking framework
    Target and response result graph. (a) Normal tracking; (b) response map under normal tracking; (c) background clutter; (d) response map under background clutter
    Fig. 4. Target and response result graph. (a) Normal tracking; (b) response map under normal tracking; (c) background clutter; (d) response map under background clutter
    Schematic diagram of HCAF algorithm framework
    Fig. 5. Schematic diagram of HCAF algorithm framework
    Precision and success rates of occlusion attributes on OTB100 dataset
    Fig. 6. Precision and success rates of occlusion attributes on OTB100 dataset
    Precision and success rates of background clutter attributes on OTB100 dataset
    Fig. 7. Precision and success rates of background clutter attributes on OTB100 dataset
    Precision and success rates on OTB100 dataset
    Fig. 8. Precision and success rates on OTB100 dataset
    Precision and success rates on LaSOT dataset
    Fig. 9. Precision and success rates on LaSOT dataset
    Tracking results of 10 tracking algorithms in partial sequences. (a) Basketball; (b) Human3; (c) Jogging-1; (d) Soccer
    Fig. 10. Tracking results of 10 tracking algorithms in partial sequences. (a) Basketball; (b) Human3; (c) Jogging-1; (d) Soccer
    ParameterParameter value
    bg and fg color models learning rate0.04
    HOG model learning rate0.01
    Scale learning rate0.025
    Table 1. Parameters configuration
    ab1b2b3b4Precision
    0.054700.4795 0.27940.21 0.110.718
    0.068330.4795 0.27940.21 0.110.706
    0.055090.4710 0.27100.21 0.110.734
    0.055090.4870 0.28700.21 0.110.721
    0.055090.4795 0.27940.15 0.050.788
    0.055090.4795 0.27940.28 0.180.792
    0.055090.4795 0.27940.21 0.110.854
    Table 2. Comparison results of different parameter settings
    DatasetHCAFAutoTrackACFTDeepSTRCFECOBACFStapleStaple_CASRDCFDSST
    OTB10077.820.274.129.817.926.776.672.45.824.47
    LaSOT67.214.266.520.49.317.665.163.72.815.47
    Table 3. Speed comparison on OTB100 and LaSOT datasets