• Journal of Synthetic Crystals
  • Vol. 50, Issue 8, 1593 (2021)
ZHANG Jun, XIONG Qian, WU Zhenhai, LONG Jiao..., ZHAO Junpu, ZHENG Jiangang, ZHANG Xiongjun, ZHENG Kuixing and WEI Xiaofeng|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Jun, XIONG Qian, WU Zhenhai, LONG Jiao, ZHAO Junpu, ZHENG Jiangang, ZHANG Xiongjun, ZHENG Kuixing, WEI Xiaofeng. Development Status of Plasma Electrode Pockels Cell[J]. Journal of Synthetic Crystals, 2021, 50(8): 1593 Copy Citation Text show less
    References

    [3] MOSES E I. Advances in inertial confinement fusion at the National Ignition Facility (NIF)[J]. Fusion Engineering and Design, 2010, 85(7/8/9): 983-986.

    [4] SPAETH M L, MANES K R, KALANTAR D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145.

    [8] ZHU Q H, ZHOU K N, SU J Q, et al. The Xingguang-{Ⅲ} laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2017, 15(1): 015301.

    [10] DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. DOI:10.1017/hpl.2019.36.

    [11] BAYRAMIAN A, ARMSTRONG P, AULT E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387.

    [12] MASON P, DIVOKY' M, ERTEL K, et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 2017, 4(4): 438-439.

    [13] BAYRAMIAN A, ACEVES S, ANKLAM T, et al. Compact, efficient laser systems required for laser inertial fusion energy[J]. Fusion Science and Technology, 2011, 60(1): 28-48.

    [14] ZHENG J G, JIANG X Y, YAN X W, et al. Progress of the 10 J water-cooled Yb∶YAG laser system in RCLF[J]. High Power Laser Science and Engineering, 2014, 2: e27. DOI:10.1017/hpl.2014.29.

    [15] GONALVS-NOVO T, ALBACH D, VINCENT B, et al. 14 J / 2 Hz Yb3+∶YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855.

    [16] WENG Z H, RUAN J J, LIN S H, et al. Fast magneto-optic switch based on nanosecond pulses[C]//2011: 095001.

    [20] ZHANG X M, WEI X F, LI M Z, et al. Bidirectional amplifying architecture with twin pulses for laser fusion facilities[J]. Laser Physics Letters, 2013, 10(11): 115803.

    [27] PERLOV D, LIVNEH S, CZECHOWICZ P, et al. Progress in growth of large β-BaB2O4 single crystals[J]. Crystal Research and Technology, 2011, 46(7): 651-654.

    [28] LIU B A, HU G H, ZHAO Y, et al. Laser induced damage of DKDP crystals with different deuterated degrees[J]. Optics & Laser Technology, 2013, 45: 469-472.

    [31] ZHANG L S, YU G W, ZHOU H L, et al. Study on rapid growth of 98% deuterated potassium dihydrogen phosphate (DKDP) crystals[J]. Journal of Crystal Growth, 2014, 401: 190-194.

    [33] AN C H, FENG K, WANG W, et al. Study on thermal field in fly-cutting process of DKDP crystal[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5/6/7/8): 3013-3024.

    [35] GOLDHAR J, HENESIAN M A. Electro-optical switches with plasma electrodes[J]. Optics Letters, 1984, 9(3): 73-75.

    [36] RHODES M A, WOODS B, DEYOREO J J, et al. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers[J]. Applied Optics, 1995, 34(24): 5312-5325.

    [37] ARNOLD P A, OLLIS C W, HINZ A F, et al. Deployment, commissioning, and operation of plasma electrode Pockels cells in the National Ignition Facility[C]//Proc SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ: the National Ignition Facility, 2004, 5341: 156-167.

    [39] GARDELLE J, PASINI E. A simple operation of a plasma-electrode Pockel’s cell for the laser megajoules[J]. Journal of Applied Physics, 2002, 91(5): 2631-2636.

    [40] ZHANG J, WU D S, ZHENG J G, et al. Single-pulse driven, large-aperture 2×1 array plasma-electrodes optical switch for SG-Ⅱ upgrading facility[C]//Proc SPIE 9294, International Symposium on Optoelectronic Technology and Application 2014: Development and Application of High Power Lasers, 2014, 9294: 92940 N.

    [41] ANDREEV N F, BABIN A A, DAVYDOV V S, et al. Wide-aperture plasma-electrode Pockels cell[J]. Plasma Physics Reports, 2011, 37(13): 1219-1224.

    [42] BOCHKOV E I, BABICH L P, BEL’KOV S A, et al. Computation of optimal operation voltage of the neon-filled plasma Pockels cell[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3122-3127.

    [43] ZHANG X J, WU D S, ZHANG J, et al. One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application[J]. Optics Express, 2009, 17(19): 17164.

    [44] ZHOU X J, GUO W Q, ZHANG X J, et al. One-dimensional model of a plasma-electrode optical switch driven by one-pulse process[J]. Optics Express, 2006, 14(7): 2880-2887.

    [45] ANDREEV N F, BESPALOV V I, BREDIKHIN V I, et al. A wide-aperture Pockels cell with three ring electrodes[J]. Quantum Electronics, 2004, 34(4): 381-384.

    [46] KURTEV S Z, DENCHEV O E, SAVOV S D. Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd∶YAG lasers and their compensation[J]. Applied Optics, 1993, 32(3): 278-285.

    [48] WEAVER L F, PETTY C S, EIMERL D. Multikilowatt Pockels cell for high average power laser systems[J]. Journal of Applied Physics, 1990, 68(6): 2589-2598.

    [49] CAO D X, ZHANG X J, ZHENG W G, et al. Thermal distortion and birefringence in repetition-rate plasma electrode Pockels cell for high average power[J]. Chinese Optics Letters, 2007, 5(5): 292-294.

    [50] ZHANG J, ZHANG X J, WU D S, et al. A reflecting Pockels cell with aperture scalable for high average power multipass amplifier systems[J]. Optics Express, 2010, 18(S2): A185.

    [51] ZHANG J, ZHANG X J, ZHENG J G, et al. Aperture scalable, high-average power capable, hybrid-electrode Pockels cell[J]. Optics Letters, 2017, 42(9): 1676-1679.

    ZHANG Jun, XIONG Qian, WU Zhenhai, LONG Jiao, ZHAO Junpu, ZHENG Jiangang, ZHANG Xiongjun, ZHENG Kuixing, WEI Xiaofeng. Development Status of Plasma Electrode Pockels Cell[J]. Journal of Synthetic Crystals, 2021, 50(8): 1593
    Download Citation