[1] ZENG X J, CHENG X Y, YU R H, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon, 2020, 168: 606-623.
[2] ZHAO B, DENG J S, ZHAO C X, et al. Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure[J]. J Mater Chem C, 2020, 8(1): 58-70.
[3] REN Y M, LI P C, QIN Z, et al. Homodispersed MoS2/Co9S8 heterostructure nanoparticles confined in rGO aerogels via Kirkendall effect for efficient electromagnetic interference shielding[J]. J Alloys Compd, 2024, 989: 174310.
[4] ZHANG F, WU L J, SUN K, et al. Microwave absorption properties and mechanism analyses of core-shell structured high-entropy oxides coated with PPy[J]. J Alloys Compd, 2024, 988: 174151.
[6] DAI G H, DENG R X, YOU X, et al. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in situ dual phases[J]. J Mater Sci Technol, 2022, 116: 11-21.
[7] BAI L, CHANG N, ZHAO M Y, et al. Broadband absorption performance of 3D-printed polyetheretherketone-based electromagnetic wave-absorbing composites[J]. Chin J Aeronaut, 2024, 37(8): 547-558.
[8] YE Z W, WANG K J, LI X Q, et al. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials[J]. J Alloys Compd, 2022, 893: 162396.
[9] KIM S H, LEE S Y, ZHANG Y L, et al. Carbon-based radar absorbing materials toward stealth technologies[J]. Adv Sci, 2023, 10(32): e2303104.
[10] XU H, DENG J S, BAI Z Y, et al. Natural magnetite/coke composite: A novel promising microwave absorption material[J]. J Alloys Compd, 2023, 931: 167497.
[12] QIN M, ZHANG L M, ZHAO X R, et al. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application[J]. Adv Sci, 2021, 8(8): 2004640.
[13] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10(3): 385-441.
[14] AAMLID S S, OUDAH M, ROTTLER J, et al. Understanding the role of entropy in high entropy oxides[J]. J Am Chem Soc, 2023, 145(11): 5991-6006.
[16] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
[18] ZHOU L, LI F, LIU J X, et al. High-entropy A2B2O7-type oxide ceramics: A potential immobilising matrix for high-level radioactive waste[J]. J Hazard Mater, 2021, 415: 125596.
[19] KRYSKO E, MIN L J, WANG Y, et al. Studies on the structure and the magnetic properties of high-entropy spinel oxide (MgMnFeCoNi)Al2O4[J]. APL Mater, 2023, 11(10): 101123.
[20] MCCORMACK S J, NAVROTSKY A. Thermodynamics of high entropy oxides[J]. Acta Mater, 2021, 202: 1-21.
[21] JIAO Y T, DAI J, FAN Z H, et al. Overview of high-entropy oxide ceramics[J]. Mater Today, 2024, 77: 92-117.
[23] ZHOU Y B, SHEN X W, QIAN T, et al. A review on the rational design and fabrication of nanosized high-entropy materials[J]. Nano Res, 2023, 16(5): 7874-7905.
[24] YAO Y G, DONG Q, BROZENA A, et al. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103.
[25] CHANG X, DUAN Z W, WANG D S, et al. High-entropy spinel ferrites with broadband wave absorption synthesized by simple solid-phase reaction[J]. Molecules, 2023, 28(8): 3468.
[26] RADO A, HAWEEK , UKOWIEC D, et al. Dielectric and electromagnetic interference shielding properties of high entropy (Zn, Fe, Ni, Mg, Cd)Fe2O4 ferrite[J]. Sci Rep, 2019, 9(1): 20078.
[28] YAN Z K, LI D P, ZHANG X, et al. Dual-phase high-entropy (FeCoNiZn)xV2Oy oxides with promising microwave absorption properties[J]. Ceram Int, 2022, 48(24): 36871-36879.
[30] ZHAO J, WANG D, JIN X, et al. Highly electro-conductive B4C-TiB2 composites with three-dimensional interconnected intergranular TiB2 network[J]. J Adv Ceram, 2023, 12(1): 182-195.
[31] ZHAO B, FAN B B, SHAO G, et al. Facile synthesis of novel heterostructure based on SnO2 nanorods grown on submicron Ni walnut with tunable electromagnetic wave absorption capabilities[J]. ACS Appl Mater Interfaces, 2015, 7(33): 18815-18823.
[32] SHI R, ZHANG Y Y, WANG Z H. Facile synthesis of a ZnCo2O4 electrocatalyst with three-dimensional architecture for methanol oxidation[J]. J Alloys Compd, 2019, 810: 151879.
[33] ZHANG Y C, SHEN Y Q, DANG M M, et al. In situ synthesis hydrophobic Co/CoO/C nanofibers with enhanced microwave absorption[J]. Ceram Int, 2021, 47(7): 9178-9187.
[34] REEVES-MCLAREN N, SHARP J, BELTRN-MIR H, et al. Spinel-rock salt transformation in LiCoMnO4-[J]. Proc Math Phys Eng Sci, 2016, 472(2185): 20140991.
[35] WINDISCH C F Jr, EXARHOS G J, OWINGS R R. Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides[J]. J Appl Phys, 2004, 95(10): 5435-5442.
[36] ZHONG W L, PENG Q, TANG X K, et al. Mn-regulated CuFe2O4 spinel based active component continuous exsolution catalyst for long-term degradation of tetracycline[J]. Sep Purif Technol, 2024, 343: 127104.
[37] ZHOU X M, ZHANG X Y, WANG G Y, et al. Preparation of (ZrTiCoNiNb)Ox high-entropy oxide powders by microwave heating with thermal field modulation[J]. Ceram Int, 2023, 49(22): 35544-35551.
[38] LIU X Y, TIAN F Y, SHENG J, et al. High-entropy porous spinel ferrite @ amorphous carbon nanocomposites with abundant structural defects for wide-band electromagnetic wave absorption[J]. Chem Eng J, 2024, 490: 151848.
[39] HE X Y, ZHAO Y H, CHEN R R, et al. Hierarchical FeCo2O4@polypyrrole core/shell nanowires on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors[J]. ACS Sustainable Chem Eng, 2018, 6(11): 14945-14954.
[40] LI Y, DUAN F, LIU S L, et al. Hierarchical flower-like Ni3V2O8/Co3V2O8 composites as advanced anode materials for lithium-ion batteries[J]. Funct Mater Lett, 2020, 13(3): 2050014.
[41] QIAN J J, DU B, HE C, et al. Morphology-controlled preparation and tunable electromagnetic wave absorption performance of manganese dioxide nanostructures[J]. J Am Ceram Soc, 2022, 105(5): 3339-3352.
[42] LI X L, BAO J, SHADIKE Z, et al. Stabilizing transition metal vacancy induced oxygen redox by Co2+/Co3+ redox and sodium-site doping for layered cathode materials[J]. Angew Chem Int Ed Engl, 2021, 60(40): 22026-22034.
[43] ZOU Y H, ZHANG W, CHEN N, et al. Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity[J]. ACS Nano, 2019, 13(2): 2062-2071.
[45] GAO L, ZHANG R D, WEI C K, et al. The dielectric and microwave absorption properties variation with temperature of La0.5Sr0.5CoO3 ceramics and improved microwave absorption by FSS[J]. Ceram Int, 2021, 47(18): 26430-26437.
[46] CHEN H, ZHAO B, ZHAO Z F, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides[J]. J Mater Sci Technol, 2020, 47: 216-222.
[47] WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy Environ Sci, 2018, 11(12): 3375-3379.
[48] GUAN P F, ZHANG X F, GUO J J. Assembled Fe3O4 nanoparticles on graphene for enhanced electromagnetic wave losses[J]. Appl Phys Lett, 2012, 101(15): 153108.
[50] PU Y P, ZHANG Q W, LI R, et al. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic[J]. Appl Phys Lett, 2019, 115(22): 223901.
[51] ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides[J]. Ceram Int, 2020, 46(6): 7430-7437.
[52] XU Z, DU Y C, LIU D W, et al. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption[J]. ACS Appl Mater Interfaces, 2019, 11(4): 4268-4277.