[1] Shi Q F, Dong B W, He T Y Y, Sun Z D, Zhu J X, Zhang Z X and Lee C 2020 Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things Infomat 2 1131–62
[2] Chang W-J, Chen L-B and Su K-Y 2019 DeepCrash: a deep learning-based internet of vehicles system for head-on and single-vehicle accident detection with emergency notification IEEE Access 7 148163–75
[3] Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S,Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extreme Manuf. 5 042010
[4] Merolla P A et al 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science 345 668–73
[5] Kandel E R 2003 The molecular biology of memory storage:a dialogue between genes and synapses Med. Sci.19 625–33
[6] Dahiya R S, Metta G, Valle M and Sandini G 2010 Tactile sensing-from humans to humanoids IEEE Trans. Robot.26 1–20
[7] Fernandes A M and Albuquerque P B 2012 Tactual perception: a review of experimental variables and procedures Cogn. Process. 13 285–301
[8] Curtis C E and D’Esposito M 2003 Persistent activity in the prefrontal cortex during working memory Trends Cogn.Sci. 7 415–23
[9] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems Nano Lett. 10 1297–301
[10] Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron.1 22–29
[11] He Y L, Yang Y, Nie S, Liu R and Wan Q 2018 Electric-double-layer transistors for synaptic devices and neuromorphic systems J. Mater. Chem. C 6 5336–52
[12] Huang H Y, Ge C, Liu Z H, Zhong H, Guo E J, He M,Wang C, Yang G Z and Jin K J 2021 Electrolyte-gated transistors for neuromorphic applications J. Semicond.42 013103
[13] Nishitani Y, Kaneko Y, Ueda M, Morie T and Fujii E 2012 Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networksJ. Appl. Phys. 111 124108
[14] Jiang J, Guo J, Wan X, Yang Y, Xie H, Niu D, Yang J, He J, Gao Y and Wan Q 2017 2D MoS2 neuromorphic devices for brain-like computational systems Small 13 1700933
[15] Qian C, Sun J, Kong L-A, Gou G Y, Yang J L, He J, Gao Y L and Wan Q 2016 Artificial synapses based on in-plane gate organic electrochemical transistors ACS Appl. Mater.Interfaces 8 26169–75
[16] Lai Q X, Zhang L, Li Z Y, Stickle W F, Williams R S and Chen Y 2010 Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions Adv. Mater. 22 2448–53
[17] Tian H, Guo Q S, Xie Y J, Zhao H, Li C, Cha J J, Xia F N and Wang H 2016 Anisotropic black phosphorus synaptic device for neuromorphic applications Adv. Mater.28 4991–7
[18] Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H and Xu W T 2019 Artificial synapses based on nanomaterials Nanotechnology 30 012001
[19] Zhou K et al 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extreme Manuf. 5 042006
[20] Jiang D L, Li J, Fu W H, Chen Q, Yang Y H, Zhou Y H and Zhang J H 2020 Light-stimulated artificial synapse with memory and learning functions by utilizing an aqueous solution-processed In2O3/AlLiO thin-film transistor ACS Appl. Mater. Interfaces 2 2772–9
[21] Dai S L, Wu X H, Liu D P, Chu Y L, Wang K, Yang B and Huang J 2018 Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors ACS Appl. Mater. Interfaces 10 21472–80
[22] Wu X H, Mao S, Chen J H and Huang J 2018 Strategies for improving the performance of sensors based on organic field-effect transistors Adv. Mater. 30 1705642
[23] Shao L et al 2019 Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices ACS Appl. Mater. Interfaces 11 12161–9
[24] Zhang H C et al 2023 Recent advances in nanofiber-based flexible transparent electrodes Int. J. Extreme Manuf.5 032005
[25] Wang J X, Chen Y, Kong L-A, Fu Y, Gao Y L and Sun J 2018 Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors Appl. Phys. Lett. 113 151101
[26] Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L and Wan Q 2019 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration Nanoscale 11 1360–9
[27] Sun J, Oh S, Choi Y, Seo S, Oh M J, Lee M, Lee W B,Yoo P J, Cho J H and Park J-H 2018 Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure Adv. Funct. Mater. 28 1804397
[28] Chen L, Hu Y Z, Huang H X, Liu C, Wu D and Xia J L 2023 Direct laser patterning of organic semiconductors for high performance OFET-based gas sensors J. Mater. Chem. C11 7088–97
[29] Hu P, He X X and Jiang H 2021 Greater than 10 cm2 V?1 s?1: a breakthrough of organic semiconductors for field-effect transistors InfoMat 3 613–30
[30] Li S-X, An Y, Sun X-C, Zhu H, Xia H and Sun H-B 2022 Highly aligned organic microwire crystal arrays for high-performance polarization-sensitive photodetectors and image sensors Sci. China Mater. 65 3105–14
[31] Zhang L L et al 2021 2D organic single crystals: synthesis,novel physics, high-performance optoelectronic devices and integration Mater. Today 50 442–75
[32] Chen Z, Duan S M, Zhang X T and Hu W P 2021 Patterning organic semiconductor crystals for optoelectronics Appl.Phys. Lett. 119 040501
[33] Kim H-M, Kim D-G, Kim Y-S, Kim M and Park J-S 2023 Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook Int. J. Extreme Manuf. 5 012006
[34] Kim Y, Park C H, An J S, Choi S-H and Kim T W 2021 Biocompatible artificial synapses based on a zein active layer obtained from maize for neuromorphic computing Sci. Rep. 11 20633
[35] Sueoka B, Cheong K Y and Zhao F 2022 Study of synaptic properties of honey thin film for neuromorphic systems Mater. Lett. 308 131169
[36] Sueoka B, Hasan Tanim M M, Williams L, Xiao Z G,Seah Y Z, Cheong K Y and Zhao F 2022 A synaptic memristor based on natural organic honey with neural facilitation Org. Electron. 109 106622
[37] Yap P L, Cheong K Y, Lee H L and Zhao F 2022 Effects of drying temperature on preparation of pectin polysaccharide thin film for resistive switching memory J.Mater. Sci., Mater. Electron. 33 19805–26
[38] Luo G, Shi J, Deng W, Chang Z, Lu Z, Zhang Y, Pan R, Jie J,Zhang X and Zhang X 2023 Boosting the performance of organic photodetectors with a solution-processed integration circuit toward ubiquitous health monitoring Adv. Mater. 35 2301020
[39] Molina-Lopez F et al 2019 Inkjet-printed stretchable and low voltage synaptic transistor array Nat. Commun.10 2676
[40] Liang J J, Tong K and Pei Q B 2016 A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors Adv. Mater. 28 5986–96
[41] Chiang Y-C, Hung C-C, Lin Y-C, Chiu Y-C, Isono T, Satoh T and Chen W-C 2020 High-performance nonvolatile organic photonic transistor memory devices using conjugated rod-coil materials as a floating gate Adv. Mater.32 2002638
[42] Liu Y Q, Yang W Y, Yan Y J, Wu X M, Wang X M,Zhou Y L, Hu Y Y, Chen H P and Guo T L 2020 Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing Nano Energy 75 104930
[43] Liu Y Q, Li E L, Wang X M, Chen Q Z, Zhou Y L, Hu Y Y,Chen G X, Chen H P and Guo T L 2020 Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection Nano Energy 78 105403
[44] Wu X M, Li E L, Liu Y Q, Lin W K, Yu R J, Chen G X,Hu Y Y, Chen H P and Guo T L 2021 Artificial multisensory integration nervous system with haptic and iconic perception behaviors Nano Energy 85 106000
[45] Yu R J, Li E L, Wu X M, Yan Y J, He W X, He L H,Chen J W, Chen H P and Guo T L 2020 Electret-based organic synaptic transistor for neuromorphic computing ACS Appl. Mater. Interfaces 12 15446–55
[46] Chen X, Li E L, Zhang X H, Chen Q Z, Yu R J, Ye Y,Chen H P and Guo T L 2022 Printed organic synaptic transistor array for one-to-many neural response IEEE Electron Device Lett. 43 394–7
[47] Zou Y, Li E L, Yu R J, Gao C S, Yu X P, Zeng B Y, Yang Q,Guo T L and Chen H P 2022 Electret-based vertical organic synaptic transistor with MXene for neural network-based computation IEEE Trans. Electron Devices69 6681–5
[48] Yang H H, Yang Q, He L H, Wu X M, Gao C S, Zhang X H,Shan L T, Chen H P and Guo T L 2022 Flexible multi-level quasi-volatile memory based on organic vertical transistor Nano Res. 15 386–94
[49] Chen T Q, Wang X, Hao D D, Dai S L, Ou Q Q, Zhang J Y and Huang J 2021 Photonic synapses with ultra-low energy consumption based on vertical organic field-effect transistors Adv. Opt. Mater. 9 2002030
[50] Wang X M, Li E L, Liu Y Q, Lan S Q, Yang H H, Yan Y J,Shan L T, Lin Z X, Chen H P and Guo T L 2021 Stretchable vertical organic transistors and their applications in neurologically systems Nano Energy90 106497
[51] Sun J, Fu Y and Wan Q 2018 Organic synaptic devices for neuromorphic systems J. Phys. D: Appl. Phys.51 314004
[52] Gkoupidenis P, Schaefer N, Garlan B and Malliaras G G2015 Neuromorphic functions in PEDOT: PSS organic electrochemical transistors Adv. Mater. 27 7176–80
[53] Gkoupidenis P, Koutsouras D A, Lonjaret T, Fairfield J A and Malliaras G G 2016 Orientation selectivity in a multi-gated organic electrochemical transistor Sci. Rep. 6 27007
[54] Zhong Y-N, Gao X, Xu J-L, Sirringhaus H and Wang S-D 2020 Selective UV-gating organic memtransistors with modulable levels of synaptic plasticity Adv. Electron.Mater. 6 1900955
[55] Lee Y R, Trung T Q, Hwang B-U and Lee N-E 2020 A flexible artificial intrinsic-synaptic tactile sensory organ Nat. Commun. 11 2753
[56] Ren Y, Yang J-Q, Zhou L, Mao J-Y, Zhang S-R, Zhou Y and Han S-T 2018 Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites Adv. Funct. Mater. 28 1805599
[57] Dai S L, Wang Y, Zhang J Y, Zhao Y W, Xiao F P, Liu D P,Wang T R and Huang J 2018 Wood-derived nanopaper dielectrics for organic synaptic transistors ACS Appl.Mater. Interfaces 10 39983–91
[58] Choi Y, Oh S, Qian C, Park J-H and Cho J H 2020 Vertical organic synapse expandable to 3D crossbar array Nat.Commun. 11 4595
[59] Kim J H, Stolte M and Würthner F 2022 Wavelength and polarization sensitive synaptic phototransistor based on organic n-type semiconductor/supramolecular J-aggregate heterostructure ACS Nano 16 19523–32
[60] Xie Z C et al 2022 All-solid-state vertical three-terminal N-type organic synaptic devices for neuromorphic computing Adv. Funct. Mater. 32 2107314
[61] Yan Y J, Yu R J, Gao C S, Sui Y, Deng Y F, Chen H P and Guo T L 2022 High-performance n-type thin-film transistor based on bilayer MXene/semiconductor with enhanced electrons transport Sci. China Mater.65 3087–95
[62] Gao C S, Yang H H, Li E L, Yan Y J, He L H, Chen H P,Lin Z X and Guo T L 2021 Heterostructured vertical organic transistor for high-performance optoelectronic memory and artificial synapse ACS Photonics 8 3094–103
[63] Gao C S, Yu R J, Li E L, Zhang C X, Zou Y, Chen H P,Lin Z X and Guo T L 2022 Adaptive immunomorphic hardware based on organic semiconductors and oxidized MXene heterostructures for feature information recognition Cell Rep. Phys. Sci. 3 100930
[64] Lan S Q, Ke Y D and Chen H P 2021 Photonic synaptic transistor based on P-type organic semiconductor blending with N-type organic semiconductor IEEE Electron Device Lett. 42 1180–3
[65] Liang K et al 2022 Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions ACS Nano 16 8651–61
[66] Sun Y L, Li M J, Ding Y T, Wang H P, Wang H, Chen Z M and Xie D 2022 Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption InfoMat 4 e12317
[67] Wang K, Dai S L, Zhao Y W, Wang Y, Liu C and Huang J 2019 Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors Small15 1900010
[68] Liu X, Huang W, Kai C, Yin L, Wang Y, Liu X, Pi X D and Yang D R 2023 Photogated synaptic transistors based on the heterostructure of 4H-SiC and organic semiconductors for neuromorphic ultraviolet vision ACS Appl. Electron.Mater. 5 367–74
[69] Wang J C, Wang Q L T, Chen Q, Lei T, Lv W M, Tu H Y,Hu R, Wang Y P, Zeng Z M and Ma T Y 2022 A floating-gate-like transistor based on InSe vdW heterostructure with high-performance synaptic characteristics Phys. Status Solidi a 219 2200156
[70] Sun Y L, Ding Y T, Xie D, Xu J L, Sun M X, Yang P F and Zhang Y F 2021 Optogenetics-inspired neuromorphic optoelectronic synaptic transistors with optically modulated plasticity Adv. Opt. Mater. 9 2002232
[71] Wang S Y et al 2019 A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility Adv. Mater. 31 1806227
[72] Yang B et al 2020 Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors Adv. Mater. 32 2001227
[73] Sun J X, Liu Y T, Yin Z G and Zheng Q D 2022 High-performance flexible photonic synapse transistors based on a bulk composite film of organic semiconductors with complementary absorption Acta Chim. Sin.80 936
[74] Ke Y D, Yu R J, Lan S Q, He L H, Yan Y J, Yang H H,Shan L T, Chen H P and Guo T L 2021 Polymer bulk-heterojunction synaptic field-effect transistors with tunable decay constant J. Mater. Chem. C 9 4854–61
[75] Van de Burgt Y, Lubberman E, Fuller E J, Keene S T,Faria G C, Agarwal S, Marinella M J, Alec Talin A and Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater. 16 414–8
[76] Qian C, Kong L-A, Yang J L, Gao Y L and Sun J 2017 Multi-gate organic neuron transistors for spatiotemporal information processing Appl. Phys. Lett. 110 083302
[77] Yu F, Zhu L Q, Gao W T, Fu Y M, Xiao H, Tao J and Zhou J M 2018 Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities ACS Appl. Mater. Interfaces 10 16881–6
[78] Kong L-A, Sun J, Qian C, Fu Y, Wang J X, Yang J L and Gao Y L 2017 Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors Org. Electron. 47 126–32
[79] Xu W T, Min S-Y, Hwang H and Lee T-W 2016 Organic core-sheath nanowire artificial synapses with femtojoule energy consumption Sci. Adv. 2 e1501326
[80] Niu X Z, Tian B B, Zhu Q X, Dkhil B and Duan C G 2022 Ferroelectric polymers for neuromorphic computing Appl.Phys. Rev. 9 021309
[81] Wang C, Agrawal A, Yu E and Roy K 2021 Multi-level neuromorphic devices built on emerging ferroic materials: a review Front. Neurosci. 15 661667
[82] Tian B-B, Zhong N and Duan C-G 2020 Recent advances,perspectives, and challenges in ferroelectric synapses Chin. Phys. B 29 097701
[83] Yan S A, Zang J Y, Xu P, Zhu Y F, Li G, Chen Q L, Chen Z J,Zhang Y, Tang M H and Zheng X J 2023 Recent progress in ferroelectric synapses and their applications Sci. China Mater. 66 877–94
[84] He Y L, Zhu L, Zhu Y, Chen C S, Jiang S S, Liu R, Shi Y and Wan Q 2021 Recent progress on emerging transistor-based neuromorphic devices Adv. Intell. Syst. 3 2000210
[85] Park C, Lee K, Koo M and Park C 2021 Soft ferroelectrics enabling high-performance intelligent photo electronics Adv. Mater. 33 2004999
[86] Sun Y M, Wang Y F, Yuan Q, He N and Wen D Z 2022 Vertical organic ferroelectric synaptic transistor for temporal information processing Adv. Mater. Interfaces9 2201421
[87] Hu D B, Wang X M, Chen H P and Guo T L 2017 High performance flexible nonvolatile memory based on vertical organic thin film transistor Adv. Funct. Mater. 27 1703541
[88] Dudem B, Ko Y H, Leem J W, Lim J H and Yu J S 2016Hybrid energy cell with hierarchical nano/micro-architectured polymer film to harvest mechanical, solar, and wind energies individually/simultaneously ACS Appl. Mater. Interfaces 8 30165–75
[89] Gao J, Zheng Y, Yu W, Wang Y N, Jin T Y, Pan X, Loh P andChen W 2021 Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations SmartMat 2 88–98
[90] Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Liu X L,Zhao X Z, Liu Y and Dong S X 2013 Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure Appl. Phys. Lett. 102 102901
[91] Bu X B, Xu H, Shang D S, Li Y, Lv H B and Liu Q 2020 Ion-gated transistor: an enabler for sensing and computing integration Adv. Intell. Syst. 2 2000156
[92] Hou Y-X et al 2021 Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing ACS Nano15 1497–508
[93] Zhu Y B, Wu C X, Xu Z W, Liu Y, Hu H L, Guo T L,Kim T W, Chai Y and Li F S 2021 Light-emitting memristors for optoelectronic artificial efferent nerve Nano Lett. 21 6087–94
[94] Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y,Fan X and Wang Z L 2016 Micro-cable structured textile for simultaneously harvesting solar and mechanical energy Nat. Energy 1 16138
[95] Stein B E and Stanford T R 2008 Multisensory integration: current issues from the perspective of the single neuron Nat. Rev. Neurosci. 9 255–66
[96] Li E L, Wu X M, Chen Q Z, Wu S Y, He L H, Yu R J,Hu Y Y, Chen H P and Guo T L 2021 Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing Nano Energy 85 106010
[97] Tian B B et al 2019 A robust artificial synapse based on organic ferroelectric polymer Adv. Electron. Mater.5 1800600
[98] Jang S, Jang S, Lee E-H, Kang M J, Wang G and Kim T-W2019 Ultrathin conformable organic artificial synapse for wearable intelligent device applications ACS Appl. Mater.Interfaces 11 1071–80
[99] Chang C et al 2022 Electret/high-k solution dielectric for low voltage synaptic transistors with near linear and ambipolar weight update IEEE Electron Device Lett. 43 1467–70
[100] Chen G X, Yu X P, Gao C S, Dai Y, Hao Y X, Yu R J,Chen H P and Guo T L 2023 Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement Nano Res. 16 7661–70
[101] Li M-Z, Guo L-C, Ding G-L, Zhou K, Xiong Z-Y, Han S-T and Zhou Y 2021 Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing ACS Appl. Mater. Interfaces 13 30861–73
[102] Lian H X, Liao Q F, Yang B D, Zhai Y B, Han S-T and Zhou Y 2021 Optoelectronic synaptic transistors based on upconverting nanoparticles J. Mater. Chem. C 9 640–8
[103] Zhang G C, Ma C, Wu X M, Zhang X H, Gao C S, Chen H P and Guo T L 2022 Transparent organic nonvolatile memory and volatile synaptic transistors based on floating gate structure IEEE Electron Device Lett. 43 733–6
[104] Zheng C Y, Liao Y, Han S-T and Zhou Y 2020 Interface modification in three-terminal organic memory and synaptic device Adv. Electron. Mater. 6 2000641
[105] Zheng C Y, Liao Y, Wang J J, Zhou Y and Han S-T 2022 Flexible floating-gate electric-double-layer organic transistor for neuromorphic computing ACS Appl. Mater.Interfaces 14 57102–12
[106] Zhou L, Mao J Y, Ren Y, Han S-T, Roy V A L and Zhou Y 2018 Recent advances of flexible data storage devices based on organic nanoscaled materials Small 14 1703126
[107] Kim C-H, Sung S and Yoon M-H 2016 Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet Sci. Rep. 6 33355
[108] Wan C J, Cai P Q, Wang M, Qian Y, Huang W and Chen X D2020 Artificial sensory memory Adv. Mater. 32 1902434
[109] Wan C J et al 2018 An artificial sensory neuron with tactile perceptual learning Adv. Mater. 30 1801291
[110] Zang Y P, Shen H G, Huang D Z, Di C-A and Zhu D B 2017 A dual-organic-transistor-based tactile-perception system with signal-processing functionality Adv. Mater.29 1606088
[111] Lee Y and Lee T-W 2019 Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics Acc. Chem. Res. 52 964–74
[112] Liu Y Q, Zhong J F, Li E L, Yang H H, Wang X M, Lai D X,Chen H P and Guo T L 2019 Self-powered artificial synapses actuated by triboelectric nanogenerator Nano Energy 60 377–84
[113] Kim Y et al 2018 A bioinspired flexible organic artificial afferent nerve Science 360 998–1003
[114] Fan F-R, Lin L, Zhu G, Wu W Z, Zhang R and Wang Z L 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films Nano Lett. 12 3109–14
[115] Wang X D, Zhang H L, Dong L, Han X, Du W M, Zhai J Y,Pan C F and Wang Z L 2016 Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping Adv. Mater. 28 2896–903
[116] You I, Choi S-E, Hwang H, Han S W, Kim J W and Jeong U 2018 E-skin tactile sensor matrix pixelated by position-registered conductive microparticles creating pressure-sensitive selectors Adv. Funct. Mater. 28 1801858
[117] Yuan Z Q, Zhou T, Yin Y Y, Cao R, Li C J and Wang Z L2017 Transparent and flexible triboelectric sensing array for touch security applications ACS Nano 11 8364–9
[118] Zhang C, Bu T Z, Zhao J Q, Liu G X, Yang H and Wang Z L 2019 Tribotronics for active mechanosensation and self-powered microsystems Adv. Funct. Mater. 29 1808114
[119] Zhang C, Zhao J Q, Zhang Z, Bu T Z, Liu G X and Fu X P 2023 Tribotronics: an emerging field by coupling triboelectricity and semiconductors Int. J. Extreme Manuf.5 042002
[120] Wang Y, Lv Z Y, Chen J R, Wang Z P, Zhou Y, Zhou L,Chen X L and Han S-T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater. 30 1802883
[121] Lee Y et al 2018 Stretchable organic optoelectronic sensorimotor synapse Sci. Adv. 4 eaat7387
[122] Deng W, Zhang X J, Jia R F, Huang L M, Zhang X H and Jie J S 2019 Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system NPG Asia Mater. 11 77
[123] Yu J, Yang X X, Gao G Y, Xiong Y, Wang Y F, Han J,Chen Y H, Zhang H, Sun Q J and Wang Z L 2021 Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure Sci. Adv. 7 eabd9117
[124] Krauhausen I et al 2021 Organic neuromorphic electronics for sensorimotor integration and learning in robotics Sci.Adv. 7 eabl5068
[125] Jung Y H, Hong S K, Wang H S, Han J H, Pham T X,Park H, Kim J, Kang S, Yoo C D and Lee K J 2020 Flexible piezoelectric acoustic sensors and machine learning for speech processing Adv. Mater. 32 1904020
[126] Rubel E W and Fritzsch B 2002 Auditory system development: primary auditory neurons and their targets Annu. Rev. Neurosci. 25 51–101
[127] Seo D-G et al 2019 Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics Nano Energy 65 104035
[128] Sun L F, Zhang Y S, Hwang G, Jiang J B, Kim D,Eshete Y A, Zhao R and Yang H 2018 Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization Nano Lett.18 3229–34
[129] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Spatiotemporal information processing emulated by multiterminal neuro-transistor networks Adv. Mater.31 1900903
[130] Liu Y Q, Liu D, Gao C S, Zhang X H, Yu R J, Wang X M,Li E L, Hu Y Y, Guo T L and Chen H P 2022 Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memorycomputing Nat. Commun. 13 7917
[131] Shan L T, Liu Y Q, Zhang X H, Li E L, Yu R J, Lian Q M,Chen X, Chen H P and Guo T L 2021 Bioinspired kinesthetic system for human-machine interaction Nano Energy 88 106283
[132] Choi D, Song M-K, Sung T, Jang S and Kwon J-Y 2020 Energy scavenging artificial nervous system for detecting rotational movement Nano Energy74 104912
[133] Chen Z J, Yu R J, Yu X P, Li E L, Wang C Y, Liu Y Q,Guo T L and Chen H P 2022 Bioinspired artificial motion sensory system for rotation recognition and rapid self-protection ACS Nano 16 19155–64
[134] Ren X B, Lu Z J, Zhang X J, Grigorian S, Deng W andJie J S 2022 Low-voltage organic field-effect transistors:challenges, progress, and prospects ACS Mater. Lett.4 1531–46